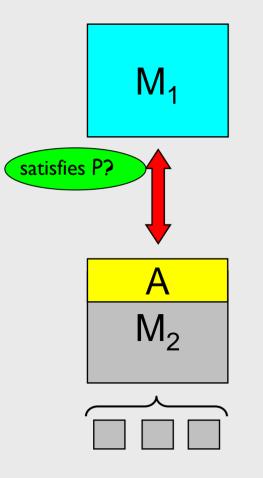


Compositional Verification

Dimitra Giannakopoulou and Corina Păsăreanu CMU / NASA Ames Research Center

does system made up of M_1 and M_2 satisfy property P?



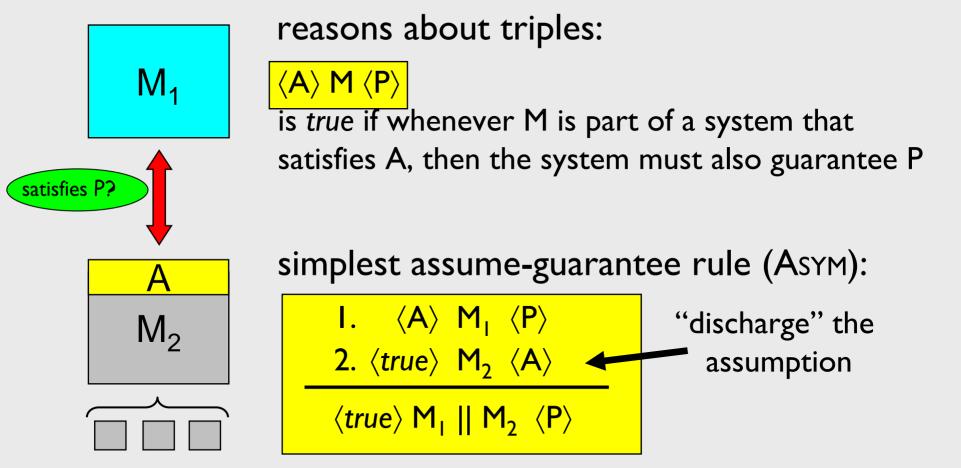
- check P on entire system: too many states!
- use system's natural decomposition into components to break-up the verification task
- check components in isolation:

does M₁ satisfy P?

- components typically satisfy requirements in specific contexts / environments
- assume-guarantee reasoning
 - introduces assumption A representing M₁'s "context"

- will not invoke "close" on a file if "open" has not previously been invoked
- accesses to shared variable "X" must be protected by lock "L"
- (rover executive) whenever thread "A" reads variable "V", no other thread can read "V" before thread "A" clears it first
- (spacecraft flight phases) a docking maneuver can only be invoked if the launch abort system has previously been jettisoned from the spacecraft

assume-guarantee reasoning



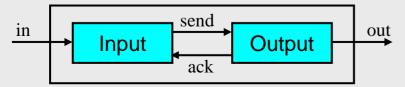
how do we come up with the assumption?

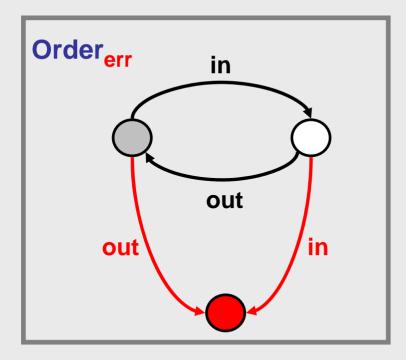
formalisms

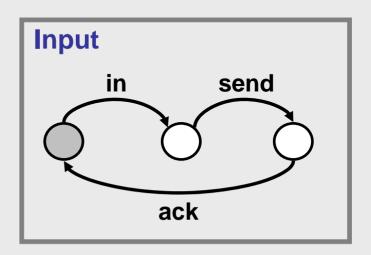
- components modeled as finite state machines (FSM)
 - FSMs assembled with parallel composition operator "||"
 - synchronizes shared actions, interleaves remaining actions
- a safety property P is a FSM
 - P describes all legal behaviors in terms of its alphabet
 - $P_{err} complement of P$
 - determinize & complete P with an "error" state;
 - bad behaviors lead to error
 - component M satisfies P iff error state unreachable in (M || P_{err})
- assume-guarantee reasoning
 - assumptions and guarantees are FSMs
 - $\langle A \rangle M \langle P \rangle$ holds iff error state unreachable in (A || M || P_{err})

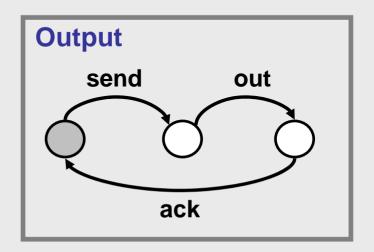
example

Require in and out to alternate (property Order)

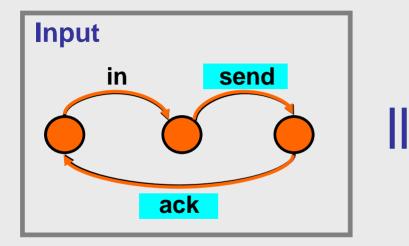


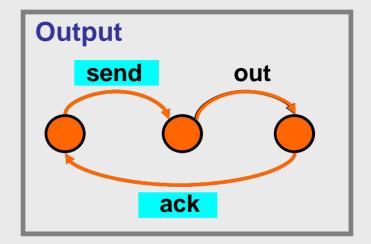




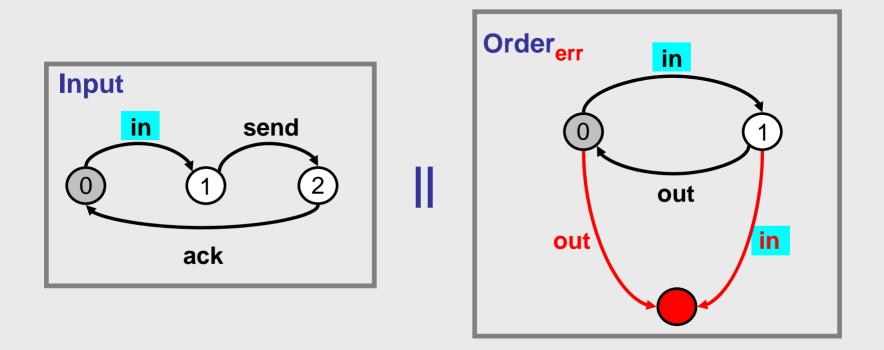


parallel composition



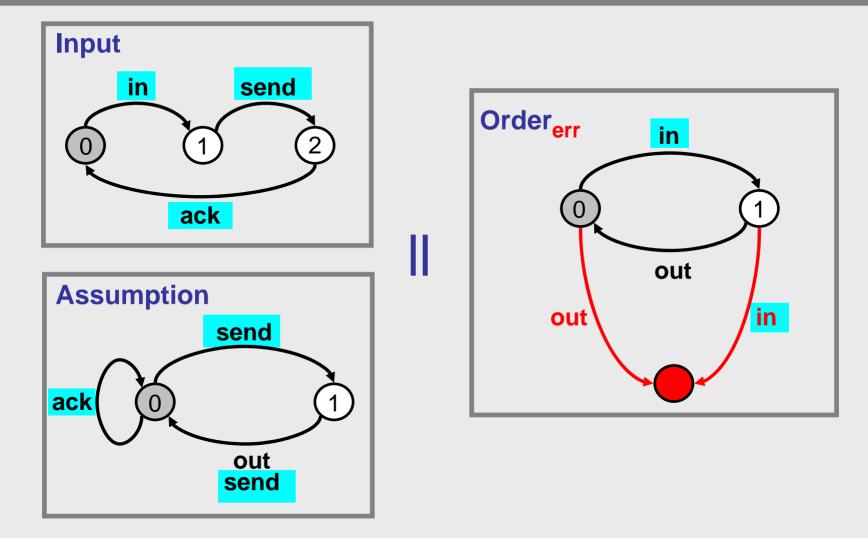


property satisfaction



crex. I: (I_0 , O_0) out (I_0 , O_{error}) *crex. 2*: (I_0 , O_0) in (I_1 , O_1) send (I_2 , O_1) out (I_2 , O_0) out (I_2 , O_{error})

assume-guarantee reasoning



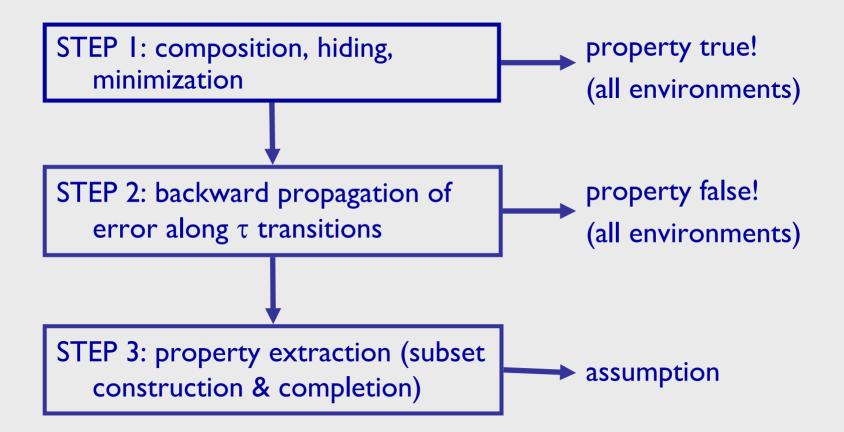
crex I: (I_0 , A_0 , O_0) out **X** *crex 2*: (I_0 , A_0 , O_0) in (I_1 , A_0 , O_1) send (I_2 , A_0 , O_1) out **X**

- given component M, property P, and the interface of M with its environment, generate the weakest environment assumption WA such that: (WA) M (P) holds
- weakest means that for all environments E:

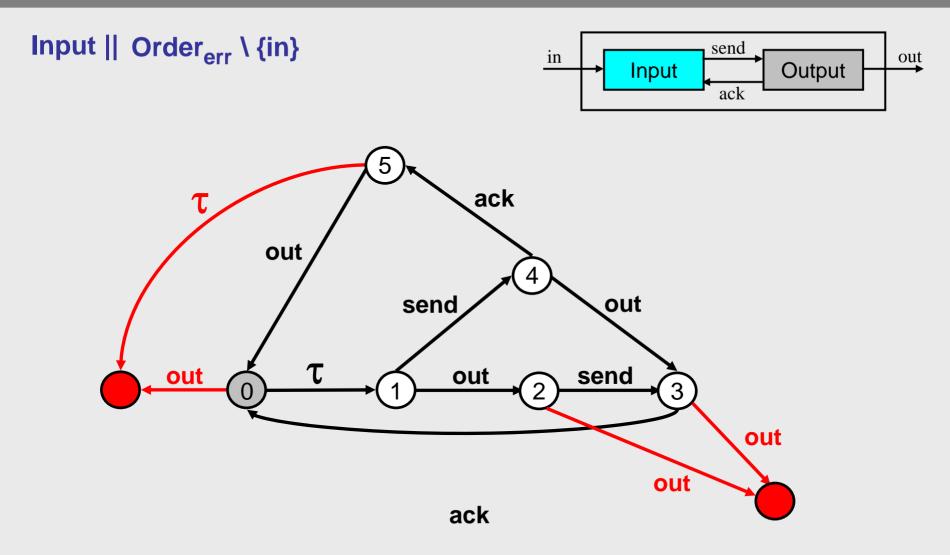
 $\left \langle \textit{true} \right \rangle M \mid \mid E \left \langle P \right \rangle \mathsf{IFF} \left \langle \textit{true} \right \rangle E \left \langle \mathsf{WA} \right \rangle$

▶ in other words, weakest means **safe** and **permissive**

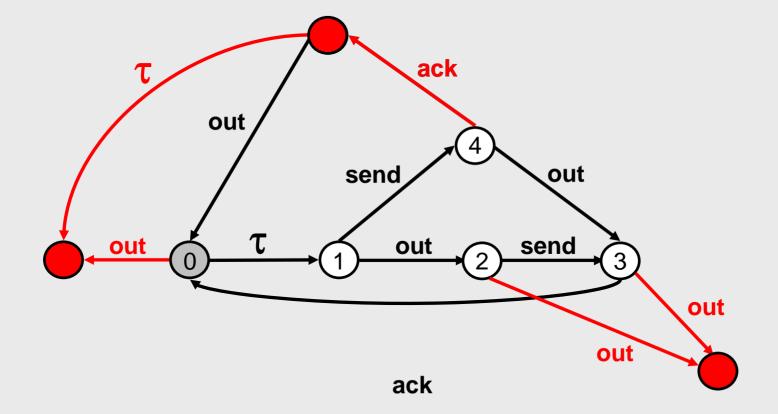
assumption generation [ASE'02]



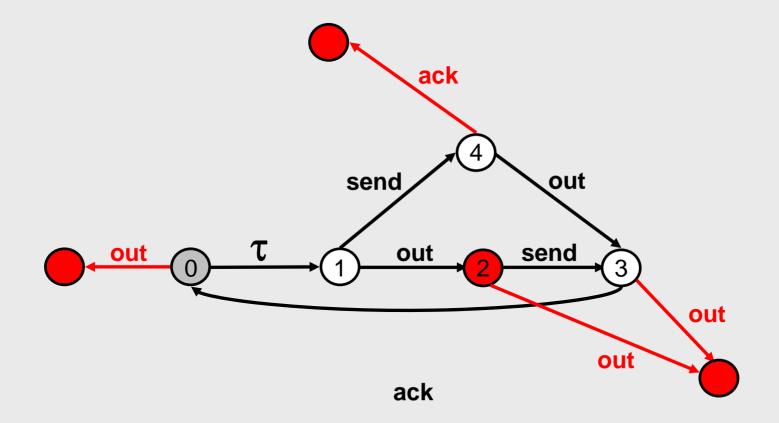
step I: composition & hiding



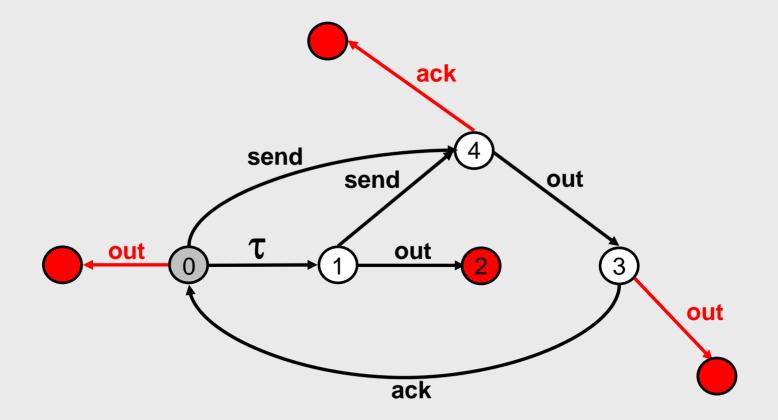
step 2: error propagation



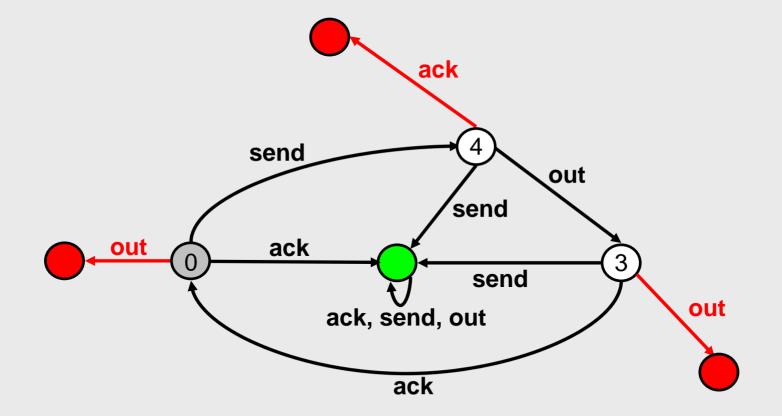
step 3: subset construction



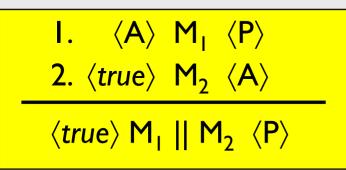
step 3: subset construction



step 3: property construction



weakest assumption in AG reasoning



weakest assumption makes rule complete

 $\begin{array}{l} \left< WA \right> M_1 \left< P \right> \ holds \ (WA \ could \ be \ false) \\ \left< true \right> M_2 \left< WA \right> \ holds \ implies \ \left< true \right> M_1 \ || \ M_2 \left< P \right> \ holds \\ \left< true \right> M_2 \left< WA \right> \ not \ holds \ implies \ \left< true \right> M_1 \ || \ M_2 \left< P \right> \ not \ holds \end{array}$

iterative solution + intermediate results

L* learns unknown regular language U (over alphabet Σ) and produces minimal DFA A such that L(A) = U (L* originally proposed by Angluin)

(queries)

the oracle

yes / no

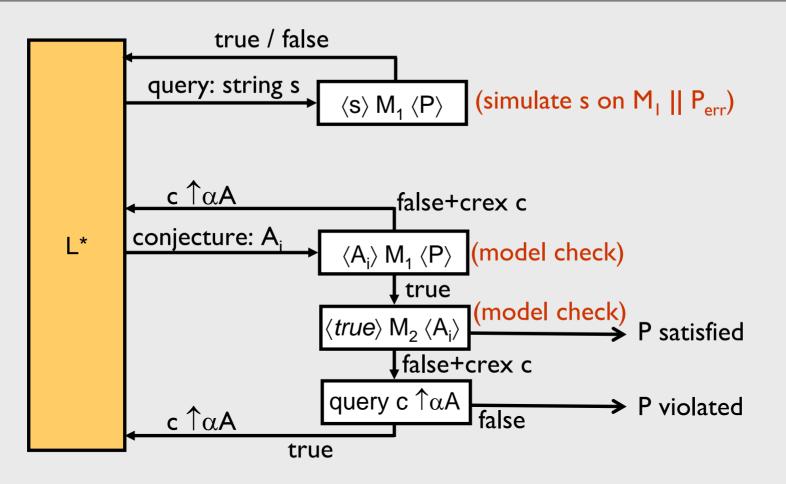
should word w be included in L(A)?

(conjectures)

here is an A – is L(A) = U? yes!

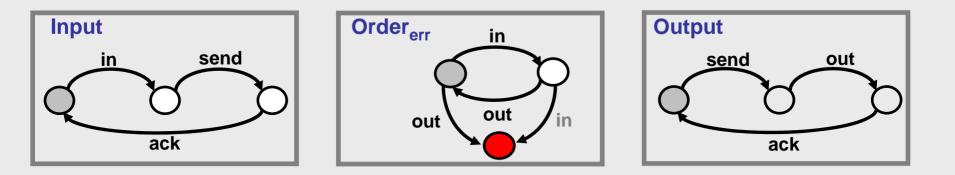
no: word w should (not) be in L(A)

oracle for WA in assume-guarantee reasoning



 $\begin{array}{l} \left< WA \right> M_1 \left< P \right> \mbox{ holds (WA could be false)} \\ \left< true \right> M_2 \left< WA \right> \mbox{ holds implies } \left< true \right> M_1 \mid\mid M_2 \left< P \right> \mbox{ holds holds } \\ \left< true \right> M_2 \left< WA \right> \mbox{ does not hold implies } \left< true \right> M_1 \mid\mid M_2 \left< P \right> \mbox{ does not hold implies } \\ \end{array}$

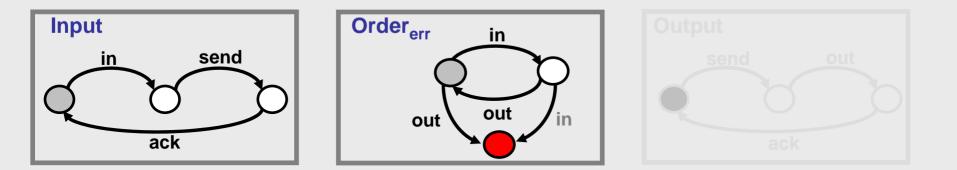
- ▶ terminates with *minimal* automaton A for U
- ▶ generates DFA candidates A_i : $|A_1| < |A_2| < ... < |A|$
- \blacktriangleright produces at most n candidates, where n = |A|
- # queries: $O(kn^2 + n \log m)$,
 - m is size of largest counterexample, k is size of alphabet
- for assume-guarantee reasoning, may terminate early with a smaller assumption than the weakest



we check: $\langle true \rangle$ Input || Output $\langle Order \rangle$ M₁ = Input, M₂ = Output, P = Order

assumption alphabet: {send, out, ack}

queries

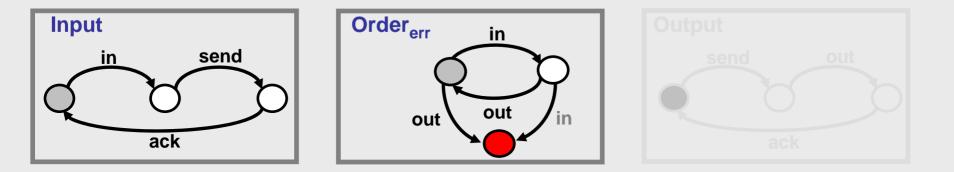


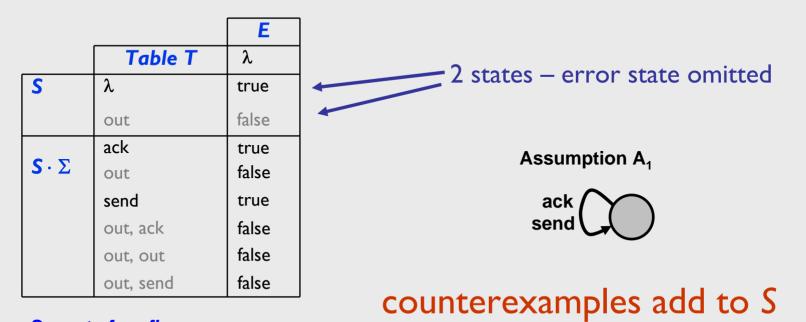
		Ε
	Table T	λ
S	λ	true
	out	false
S·Σ	ack	true
	out	false
	send	true
	out, ack	false
	out, out	false
	out, send	false

closed (adds to S) consistent (adds to E)

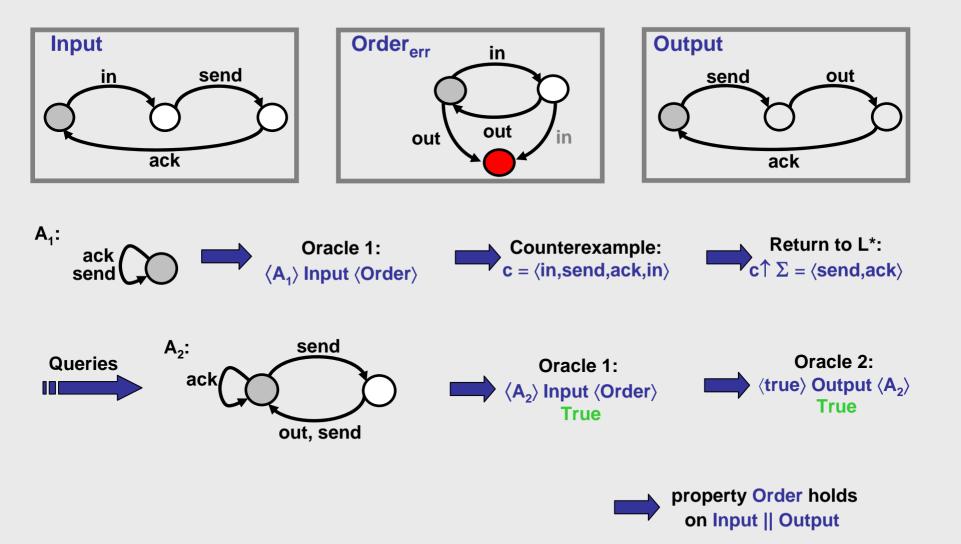
S = set of prefixes E = set of suffixes

candidate construction





S = set of prefixes E = set of suffixes



please ask LOTS of questions!