
Compositional
Verification

Dimitra

Giannakopoulou

and Corina

Păsăreanu
CMU / NASA Ames Research Center

compositional verification

M2

M1

A

satisfies

P?

check P on entire system: too many states!
use system’s natural decomposition into
components to break-up the verification task
check components in isolation:

does M1 satisfy P?

–

components typically satisfy requirements in
specific contexts / environments

assume-guarantee reasoning
–

introduces assumption

A representing M1

’s
“context”

does system made up of M1

and M2

satisfy property P?

examples of assumptions

will not invoke “close”

on a file if “open”

has not previously
been invoked
accesses to shared variable “X”

must be protected by lock “L”

(rover executive)

whenever thread “A”

reads variable “V”, no
other thread can read “V”

before thread “A”

clears it first

(spacecraft flight phases)

a docking maneuver can only be
invoked if the launch abort system has previously been
jettisoned from the spacecraft

assume-guarantee reasoning

“discharge”

the
assumption

1.

〈A〉

M1 〈P〉

2.

〈true〉

M2

〈A〉

〈true〉

M1

|| M2

〈P〉

M2

M1

A

satisfies

P?

reasons about triples:
〈A〉

M 〈P〉

is true

if whenever M is part of a system that
satisfies A, then the system must also guarantee P

simplest assume-guarantee rule (ASYM):

assume-guarantee reasoning

how do we come up
with the assumption?

formalisms

components modeled as finite state machines (FSM)
–

FSMs

assembled with parallel composition operator “||”
•

synchronizes shared actions, interleaves remaining actions

a safety property P is a FSM
–

P describes all legal behaviors in terms of its alphabet

–

Perr

–

complement of P
•

determinize

& complete P with an “error”

state;
•

bad behaviors lead to error

–

component M satisfies P iff

error state unreachable in (M || Perr

)

assume-guarantee

reasoning
–

assumptions and guarantees are FSMs
–

〈A〉

M 〈P〉

holds iff

error state unreachable in (A || M || Perr

)

example

Input Output
in send

ack

out
Input

in send

ack

Output
outsend

ack

Require in and out to alternate (property Order)

Ordererr in

out

inout

parallel composition

Input
in send

ack

Output
outsend

ack

||

property satisfaction

||

Ordererr in

out

inout

Input
in send

ack

crex. 1:

(I0 , O0) out (I0 , Oerror)
crex. 2:

(I0 , O0) in (I1 , O1) send (I2 , O1) out (I2 , O0) out (I2 , Oerror)

0 1 2

0 1

assume-guarantee reasoning

||

Ordererr in

out

inout

Input
in send

ack

send

out
send

ack

Assumption

crex

1:

(I0 , A0 , O0) out X
crex

2:

(I0 , A0 , O0) in (I1 , A0 , O1) send (I2 , A0 , O1) out X

0 1 2

10

10

the weakest assumption

given component M, property P, and the interface of M

with
its environment, generate the weakest

environment

assumption WA

such that: 〈WA〉

M 〈P〉

holds

weakest means that for all environments E:

〈true〉

M || E 〈P〉

IFF 〈true〉

E 〈WA〉

in other words, weakest means safe

and permissive

assumption generation [ASE’02]

STEP 1: composition, hiding,
minimization

property true!
(all environments)

STEP 2: backward propagation of
error along τ

transitions

property false!
(all environments)

STEP 3: property extraction (subset
construction & completion) assumption

step 1: composition & hiding

send

ack

Input || Ordererr \ {in}

0 1 2 3

4

ack

sendout

out

out

τout

out

out

τ
5

Input Output
in send

ack

out

step 2: error propagation

send

0 1 2 3

4

ack

sendout

out

out

τout

out

out

τ
5

ack

ack

step 3: subset construction

send

0 1 2 3

4

sendout

out

τout

out

out

ack

ack

step 3: subset construction

send

0 1 2 3

4

out

out

τout

out

send

ack

ack

step 3: property construction

3

out

out

out

send

ack
send

send
ack, send, out

ack

ack

0

4

weakest assumption in AG reasoning

〈WA〉

M1 〈P〉

holds (WA could be false)
〈true〉

M2

〈WA〉

holds implies 〈true〉

M1

|| M2

〈P〉

holds
〈true〉

M2

〈WA〉

not holds implies 〈true〉

M1

|| M2

〈P〉

not holds

1.

〈A〉

M1 〈P〉

2.

〈true〉

M2

〈A〉

〈true〉

M1

|| M2

〈P〉

weakest assumption makes
rule complete

learning assumptions

iterative solution +
intermediate results

L* learns unknown regular language
U (over alphabet Σ) and produces
minimal DFA A such that L(A) = U

(L* originally proposed by Angluin)

(queries)
should word w be included in

L(A)?

(conjectures)
here is an A –

is

L(A) = U?

yes / no

yes!
no: word w

should (not) be in

L(A)

the oracleL* learner

query c ↑αA

〈true〉

M2 〈Ai 〉

oracle for WA in assume-guarantee reasoning

L*

query: string s
〈s〉

M1 〈P〉

conjecture: Ai 〈Ai 〉

M1 〈P〉

false+crex

cc ↑αA

c ↑αA

(simulate s on M1

|| Perr

)

(model check)

(model check)

false+crex

c

〈WA〉

M1 〈P〉

holds (WA could be false)
〈true〉

M2

〈WA〉

holds implies 〈true〉

M1

|| M2

〈P〉

holds
〈true〉

M2

〈WA〉

does not hold implies 〈true〉

M1

|| M2

〈P〉

does not hold

true / false

true

P satisfied

P violated

true
false

characteristics

terminates with minimal automaton A

for U
generates DFA candidates Ai

: |A1

| < | A2

| < …

< |A|
produces at most n

candidates, where n

= |A|

queries:

O(kn2

+ n

logm),
–

m

is size of largest counterexample, k

is size of alphabet

for assume-guarantee reasoning, may terminate early with a
smaller assumption than the weakest

example

we check: 〈true〉

Input || Output 〈Order〉
M1

= Input, M2

= Output, P = Order

assumption alphabet:

{send, out, ack}

Ordererr in

outout in

Output
send

ack

out
Input

in

ack

send

queries

E
Table T λ

S λ true

out false

S

⋅ Σ
ack
out
send
out, ack
out, out
out, send

S = set of prefixes
E = set of suffixes

true
false
true

false
false

false

Ordererr in

outout in

Input
in

ack

send
Output

send

ack

out

closed (adds to S)
consistent (adds to E)

candidate construction

E
Table T λ

S λ true

out false

S

⋅ Σ
ack
out
send
out, ack
out, out
out, send

S = set of prefixes
E = set of suffixes

2 states –

error state omitted

ack
send

Assumption A1
true
false
true

false
false

false

Ordererr in

outout in

Input
in

ack

send
Output

send

ack

out

counterexamples add to S

conjectures

ack
send

A1 : Oracle 1:
〈A1 〉

Input 〈Order〉
Counterexample:

c = 〈in,send,ack,in〉
Return to L*:

c↑

Σ

= 〈send,ack〉

Oracle 1:
〈A2 〉

Input 〈Order〉
True

Oracle 2:
〈true〉

Output 〈A2 〉
True

property Order holds
on Input || Output

ack

send

out, send

A2 :Queries

Ordererr in

outout in

Output
send

ack

out
Input

in

ack

send

end of part 1

please ask LOTS of questions!

	Compositional �Verification �
	compositional verification
	examples of assumptions
	assume-guarantee reasoning
	assume-guarantee reasoning
	formalisms
	example
	parallel composition
	property satisfaction
	assume-guarantee reasoning
	the weakest assumption
	assumption generation [ASE’02]
	step 1: composition & hiding
	step 2: error propagation
	step 3: subset construction
	step 3: subset construction
	step 3: property construction
	weakest assumption in AG reasoning
	learning assumptions
	Slide Number 20
	oracle for WA in assume-guarantee reasoning
	characteristics
	example
	queries
	candidate construction
	conjectures
	end of part 1

