
A Randomized Dynamic Program Analysis Technique for
Detecting Real Deadlocks

Abstract
We present a novel dynamic analysis technique that finds real dead-
locks in multi-threaded programs. Our technique runs in two stages.
In the first stage, we use an imprecise dynamic analysis technique
to find potential deadlocks in a multi-threaded program by observ-
ing an execution of the program. In the second stage, we control
a random thread scheduler to create the potential deadlocks with
high probability. Unlike other dynamic analysis techniques, our ap-
proach has the advantage that it does not give any false warnings.
We have implemented the technique in a prototype tool for Java,
and have experimented on a number of large multi-threaded Java
programs. We report a number of previously known and unknown
real deadlocks that were found in these benchmarks.

1. Introduction
A common cause for unresponsiveness in software systems is a
deadlock situation. In shared-memory multi-threaded systems, a
deadlock is a liveness failure that happens when a set of threads
blocks forever because each thread in the set is waiting to ac-
quire a lock held by another thread in the set. Deadlock is a
common form of bug in today’s software—Sun’s bug database at
http://bugs.sun.com/ shows that 6,500 bug reports out of
198,000 contain the keyword ‘deadlock’. There are a few reasons
for the existence of deadlock bugs in multi-threaded programs.
First, software systems are often written by many programmers;
therefore, it becomes difficult to follow a lock order discipline that
could avoid deadlock. Second, programmers often introduce dead-
locks when they fix race conditions by adding new locks. Third,
software systems can allow incorporation of third-party software
(e.g. plugins); third-party software may not follow the locking dis-
cipline followed by the parent software and this sometimes results
in deadlock bugs [16].

Deadlocks are often difficult to find during the testing phase
because they happen under very specific thread schedules. Coming
up with these subtle thread schedules through stress testing or
random testing is often difficult. Model checking [15, 11, 7, 14, 6]
removes these limitations of testing by systematically exploring
all thread schedules. However, model checking fails to scale for
large multi-threaded programs due to the exponential increase in
the number of thread schedules with execution length.

Several program analysis techniques, both static [18, 10, 2, 9,
24, 26] and dynamic [12, 13, 4, 1], have been developed to de-
tect and predict deadlocks in multi-threaded programs. Static tech-
niques often give no false negatives, but they often report many
false positives. For example, the static deadlock detector developed
by Williams et al. [26] reports 100,000 deadlocks in Sun’s JDK
1.4 1, out of which only 7 are real deadlocks. Type and annotation
based techniques [5, 10] help to avoid deadlocks during coding,
but they impose the burden of annotation on programmers. Predic-
tive dynamic techniques such as Goodlock [13] and its improve-
ments [4, 1] give both false negatives and false positives. For exam-
ple, in our experiments we have found that an improved Goodlock

1 They reduce the number of reports to 70 after applying various unsound
heuristics

[Copyright notice will appear here once ’preprint’ option is removed.]

can report as many as 254 false positives for our Jigsaw web server.
Being imprecise in nature, most of these tools require manual in-
spection to see if a deadlock is real or not. Nevertheless, these tech-
niques are effective in finding deadlocks because they can predict
deadlocks that could potentially happen during a real execution—
for such a prediction, static analyses do not need to see an actual ex-
ecution and dynamic analyses need to see only one multi-threaded
execution.

Dynamic analysis based deadlock detection can be made precise
by taking the happens-before relation [17] into account. However,
it has several problems. First, it reduces the predictive power of
dynamic techniques—it fails to report deadlocks that could happen
in a significantly different thread schedule. Second, it can perturb
an execution significantly and can fail to report a deadlock that can
happen when no dynamic analysis is performed.

We propose a new dynamic technique for detecting real dead-
locks in multi-threaded programs called DEADLOCKFUZZER,
which combines an imprecise dynamic deadlock detection tech-
nique with a randomized thread scheduler to create real dead-
locks with high probability. The technique works in two phases.
In the first phase, we use an informative and a simple variant
of the Goodlock algorithm, called informative Goodlock, or sim-
ply iGoodlock, to discover potential deadlock cycles in a multi-
threaded program. For example, iGoodlock could report a cycle
of the form (t1, l1, l2, [c1, c2])(t2, l2, l1, [c

′
1, c
′
2]), which says that

there could be a deadlock if thread t1 tries to acquire lock l2 at
program location c2 after acquiring lock l1 at program location c1
and thread t2 tries to acquire lock l1 at program location c′2 af-
ter acquiring lock l2 at program location c′1. In the second phase,
DEADLOCKFUZZER executes the program with a random sched-
ule in order to create a real deadlock corresponding to a cycle
reported in the previous phase. For example, consider the cycle
(t1, l1, l2, [c1, c2])(t2, l2, l1, [c

′
1, c
′
2]) again. At each program state,

the random scheduler picks a thread and executes its next statement
with the following exception. If t1 is about to acquire lock l2 at lo-
cation c2 after acquiring lock l1 at location c1, then the random
scheduler pauses the execution of thread t1. Similarly, the random
scheduler pauses the execution of thread t2 if it is about to acquire
lock l1 at location c′2 after acquiring lock l2 at location c′1. In this
biased random schedule, it is very likely that both the threads will
reach a state where t1 is trying to acquire l2 while holding l1 and t2
is trying to acquire l1 while holding l2. This results in a real dead-
lock. In summary, DEADLOCKFUZZER actively controls a random-
ized thread scheduler based on a potential deadlock cycle reported
by an imprecise deadlock detection technique.

The above technique poses the following key challenge. Phase
II assumes that Phase I can provide it with precise knowledge about
the thread and lock objects involved in the deadlock cycle. Unfor-
tunately, since thread and lock objects are created dynamically at
runtime, their addresses cannot be used to identify them across ex-
ecutions, i.e. in the above example, addresses of t1, t2, l1, l2 do not
remain the same between Phase I and Phase II executions. There-
fore, we need some mechanism to identify the same objects across
executions. Specifically, we need a form of object abstraction such
that if two dynamic objects in different executions are the same,
they must have the same abstraction. For example, the label of a
statement at which an object is created can be used as its abstrac-
tion. Such an abstraction of an object does not change across execu-

1 2009/1/12

tions. However, an abstraction could be the same for several objects
(e.g. if both l1 and l2 in the above example are created by the same
statement). In this paper, we propose two techniques for comput-
ing the abstraction of an object that helps us to distinguish between
different objects more precisely—the first technique is motivated
by the notion of k-object sensitivity in static analysis [19] and the
second technique is motivated by the notion of execution index-
ing [27]. We show that both these abstractions are better than the
trivial abstraction where all objects have the same abstraction. We
also empirically show that the abstraction based on execution in-
dexing is better than the abstraction based on k-object-sensitivity
in most benchmarks.

We have implemented DEADLOCKFUZZER for multi-threaded
Java programs in a prototype tool. We have applied the tool
to a large number of benchmarks having a total of over 600K
lines of code. The results of our experiments show that DEAD-
LOCKFUZZER can create real deadlocks with high probability and
DEADLOCKFUZZER can detect all previously known real dead-
locks.

We make the following contributions in this paper.
• We propose a simple and informative variant of the Goodlock

algorithm, called iGoodlock. Unlike existing Goodlock algo-
rithms [13, 4, 1], iGoodlock does not use lock graphs or depth-
first search, but reports the same deadlocks as the existing algo-
rithms. Due to this modification, iGoodlock uses more memory,
but reduces runtime complexity. We also attach context infor-
mation with each cycle that helps in debugging and in biasing
the random scheduler. iGoodlock is iterative in nature—it finds
all cycles of length k before finding any cycle of length k + 1.
Our experiments show that all real deadlocks in our benchmarks
have length two. Therefore, if we have a limited time budget,
we can run iGoodlock for one iteration so that it only reports
deadlock cycles of length 2.
• Our key contribution is an active random deadlock detecting

scheduler that can create real deadlocks with high probability
(we show this claim empirically) based on information provided
by iGoodlock. This phase prevents us from reporting any false
positives and creates real deadlocks which are useful for de-
bugging. This relieves the manual inspection burden associated
with other imprecise techniques such as Goodlock.
• We propose two kinds of object abstraction techniques that help

us correlate thread and lock objects between iGoodlock and the
randomized scheduling algorithm.
• We have implemented DEADLOCKFUZZER in a tool for Java

and have discovered subtle previously known and unknown
deadlocks in large applications. To the best of our knowledge,
DEADLOCKFUZZER is the first precise dynamic deadlock anal-
ysis tool for Java that has been applied to large Java applica-
tions.

2. Algorithm
The DEADLOCKFUZZER algorithm consists of two phases. In the
first phase, we execute a multi-threaded program and find poten-
tial deadlocks that could happen in some execution of the program.
This phase uses a modified Goodlock algorithm, called informative
Goodlock, or simply iGoodlock, which identifies potential dead-
locks even if the observed execution does not deadlock. We call
the modified algorithm informative because we provide suitable
debugging information to identify the cause of the deadlock—this
debugging information is used by the second phase to create real
deadlocks with high probability. A limitation of iGoodlock is that
it can give false positives because it does not consider the happens-
before relation between the transitions in an execution. As a result
the user is required to manually inspect such potential deadlocks.
The second phase removes this burden from the user. In this phase,

a random thread scheduler is biased to generate an execution that
creates a real deadlock reported in the previous phase with high
probability. We next describe these two phases in more detail.

2.1 Background Definitions
We use a general and simple model of a concurrent system to
describe our dynamic deadlock checking algorithm. We consider
a concurrent system to be composed of a finite set of threads.
Each thread executes a sequence of labeled statements. A thread
communicates with other threads using shared objects. At any
point during program execution, a concurrent system is in a state.
Let s0 be the initial state. A concurrent system evolves from one
state to another state when a thread executes a statement. In our
algorithms, we will consider the following dynamic instances of
labeled program statements:

1. c : Acquire(l), denoting the acquire of the dynamic lock
object l. c is the label of the statement (same for below).

2. c : Release(l), denoting the release of the dynamic lock
object l.

3. c : Call(m), denoting a call to the method m.

4. c : Return(m), denoting the return from the method m.

5. c : o =new (o′, T), where the statement occurs in the body of
a method m and when the this argument of m evaluates to
object o′, then o is the dynamic object of type T allocated by
the statement.

In several languages including Java, locks are re-entrant, i.e.,
a thread may re-acquire a lock it already holds. In our algorithm,
we ignore the execution of c : Acquire(l) or c : Release(l)
statements by a thread t, if t re-acquires the lock l or does not
release the lock l, respectively2. To simplify exposition, we also
assume that locks are acquired and released in a nested way, i.e.,
if a thread acquires l2 after acquiring l1, then it has to release l2
before releasing l1. Our algorithm can easily be extended to handle
languages where locks can be acquired and released in an arbitrary
order.

Next we introduce some definitions that we will use to describe
our algorithms.

• Enabled(s) denotes the set of threads that are enabled in the
state s. A thread is disabled if it is waiting to acquire a lock
already held by some other thread (or waiting on a join or a
wait in Java.)
• Alive(s) denotes the set of threads whose executions have not

terminated in the state s. A state s is in a stall state if the set of
enabled threads in s (i.e. Enabled(s)) is empty and the set of
threads that are alive (i.e. Alive(s)) is non-empty.
• Execute(s, t) returns the state after executing the next state-

ment of the thread t in the state s.

2.2 Phase I: iGoodlock
In this section, we present a formal description of iGoodlock. The
algorithm observes the execution of a multi-threaded program and
computes a lock dependency relation (defined below) and uses a
transitive closure of this relation to compute potential deadlock
cycles. The algorithm improves over generalized Goodlock algo-
rithms [4, 1] in two ways. First, it adds context information to a

2 This is implemented by associating a usage counter with a lock which is
incremented whenever a thread acquires or re-acquires the lock and decre-
mented whenever a thread releases the lock. Execution of Acquire(l) by
t is considered whenever the thread t acquires or re-acquires the lock l and
the usage counter associated with l is incremented from 0 to 1.

2 2009/1/12

computed potential deadlock cycle. This information helps to iden-
tify the program locations where the deadlock could happen and
also to statically identify the lock and thread objects involved in the
deadlock cycle. Second, we simplify the generalized Goodlock al-
gorithm by avoiding the construction of a lock graph, where locks
form the vertices and a labeled edge is added from one lock to
another lock if a thread acquires the latter lock while holding the
former lock in some program state. Unlike existing Goodlock algo-
rithms, iGoodlock does not perform a depth-first search, but com-
putes transitive closure of the lock dependency relation. As such it
uses more memory, but has better runtime complexity. We next in-
troduce some formal definitions before we describe the algorithm.

Given a multi-threaded execution σ, let Lσ be the set of lock
objects that were held by any thread in the execution and Tσ be
the set of threads executed in the execution. Let C be the set of all
statement labels in the multi-threaded program. We next define the
lock dependency relation of a multi-threaded execution as follows.

DEFINITION 1. Given an execution σ, a lock dependency relation
Dσ of σ is a subset of Tσ×2Lσ ×Lσ×C∗ such that (t, L, l, C) ∈
Dσ iff in the execution σ, in some state, thread t acquires lock l
while holding the locks in the set L, and C is the sequence of labels
of Acquire statements that were executed by t to acquire the locks
in L ∪ {l}.

DEFINITION 2. Given a lock dependency relation D, a lock de-
pendency chain τ = 〈(t1, L1, l1, C1), . . . , (tm, Lm, lm, Cm)〉 is a
sequence in D∗ such that the following properties hold.

1. for all distinct i, j ∈ [1,m], ti 6= tj , i.e. the threads
t1, t2, . . . , tm are all distinct objects,

2. for all distinct i, j ∈ [1,m], li 6= lj , i.e. the lock objects
l1, l2, . . . , lm are distinct,

3. for all i ∈ [1,m − 1], li ∈ Li+1, i.e. each thread could
potentially wait to acquire a lock that is held by the next thread,

4. for all distinct i, j ∈ [1,m], Li ∩ Lj = ∅, i.e., each thread ti
should be able to acquire the locks in Li without waiting.

DEFINITION 3. A lock dependency chain
τ = 〈(t1, L1, l1, C1), . . . , (tm, Lm, lm, Cm)〉

is a potential deadlock cycle if lm ∈ L1.

Note that the definition of a potential deadlock cycle never
uses any of the Ci’s in Dσ to compute a potential deadlock cycle.
Each Ci of a potential deadlock cycle provides us with information
about program locations where the locks involved in the cycle were
acquired. This is useful for debugging and is also used by the
active random deadlock checker to determine the program locations
where it needs to pause a thread.

Each lock and thread object involved in a potential deadlock cy-
cle is identified by its unique id, which is typically the address of
the object. The unique id of an object, being based on dynamic in-
formation, can change from execution to execution. Therefore, the
unique id of an object cannot be used by the active random checker
to identify a thread or a lock object across executions. In order to
overcome this limitation, we compute an abstraction of each object.
An abstraction of an object identifies an object by static program in-
formation. For example, the label of a statement at which an object
is created could be used as its abstraction. We describe two bet-
ter (i.e. more precise) object abstraction computation techniques in
Section 2.4. In this section, we assume that abs(o) returns some
abstraction of the object o.

Given a potential deadlock cycle 〈(t1, L1, l1, C1), . . . ,
(tm, Lm, lm, Cm)〉, iGoodlock reports the abstract deadlock
cycle 〈abs(t1, L1, l1, C1), . . . , abs(tm, Lm, lm, Cm)〉 =
〈(abs(t1),abs(l1), C1), . . . , (abs(tm),abs(lm), Cm)〉. The
active random checker takes such an abstract deadlock cycle and

biases a random scheduler so that a real deadlock corresponding to
the cycle gets created with high probability.

We next describe iGoodlock. Specifically, we describe how
we compute the lock dependency relation during a multi-threaded
execution and how we compute all potential deadlock cycles given
a lock dependency relation.

2.2.1 Computing the lock dependency relation of a
multi-threaded execution

In order to compute the lock dependency relation during a multi-
threaded execution, we instrument the program to maintain the
following three data structures:

• LockSet that maps each thread to a stack of locks held by the
thread
• Context that maps each thread to a stack of the labels of

statements where the thread acquired the currently held locks
• D is the lock dependence relation

We update the above three data structures during a multi-threaded
execution as follows:

• Initialization:

for all t, both LockSet[t] and Context[t] map to an empty stack

D is an empty set

• If thread t executes the statement c : Acquire(l)

push c to Context[t]

add (t,LockSet[t], l, Context[t]) to D

push l to LockSet[t]

• If thread t executes the statement c : Release(l)

pop from Context[t]

pop from LockSet[t]

At the end of the execution, we outputD as the lock dependency
relation of the execution.

2.2.2 Computing potential deadlock cycles iteratively
Let Dk denote the set of all lock dependency chains of D that has
length k. Therefore,D1 = D. iGoodlock computes potential dead-
lock cycles by iteratively computing D2, D3, D4, . . . and finding
deadlock cycles in those sets. The iterative algorithm for comput-
ing potential deadlock cycles is described in Algorithm 1.

Algorithm 1 iGoodlock(D)
1: INPUTS: lock dependency relation D
2: i⇐ 1
3: Di ⇐ D
4: while Di 6= ∅ do
5: for each (t, L, l, C) ∈ D and each τ in Di do
6: if τ, (t, L, l, C) is a dependency chain by Definition 2 then
7: if τ, (t, L, l, C) is a potential deadlock cycle by Definition 3

then
8: report abs(τ, (t, L, l, C)) as a potential deadlock cycle
9: else

10: add τ, (t, L, l, C) to Di+1

11: end if
12: end if
13: end for
14: i⇐ i+ 1
15: end while

Note that in iGoodlock(D) we do not add a lock dependency
chain to Di+1 if it is a deadlock cycle. This ensures that we do
not report complex deadlock cycles, i.e. deadlock cycles that can
be decomposed into simpler cycles.

3 2009/1/12

Algorithm 2 simpleRandomChecker(s0)
1: INPUTS: the initial state s0
2: s := s0
3: while Enabled(s) 6= ∅ do
4: t⇐ a random thread in Enabled(s)
5: s := Execute(s, t)
6: end while
7: if Alive(s) 6= ∅ then
8: print ‘System Stall!’
9: end if

2.2.3 Avoiding duplicate deadlock cycles
In Algorithm 1, a deadlock cycle of length k gets reported k times.
For example, if
〈(t1, L1, l1, C1), (t2, L2, l2, C2), . . . , (tm, Lm, lm, Cm)〉

is reported as a deadlock cycle, then
〈(t2, L2, l2, C2), . . . , (tm, Lm, lm, Cm), (t1, L1, l1, C1)〉

is also reported as a cycle. In order to avoid such duplicates, we put
another constraint in Definition 2: the unique id of thread t1 must
be less than the unique id of threads t2, . . . , tm.

2.3 Phase II: The Active Random Deadlock Checking
Algorithm

DEADLOCKFUZZER executes a multi-threaded program using a
random scheduler. A simple randomized execution algorithm is
shown in Algorithm 2. Starting from the initial state s0, this al-
gorithm, at every state, randomly picks an enabled thread and exe-
cutes its next statement. The algorithm terminates when the system
reaches a state that has no enabled threads. At termination, if there
is at least one thread that is alive, the algorithm reports a system
stall. A stall could happen due to a resource deadlock (i.e. dead-
locks that happen due to locks) or a communication deadlock (i.e. a
deadlock that happens when each thread is waiting for a signal from
some other thread in the set). We only consider resource deadlocks
in this paper.

A key limitation of this simple random scheduling algorithm
is that it may not create real deadlocks very often. DEADLOCK-
FUZZER biases the random scheduler so that potential deadlock
cycles reported by iGoodlock get created with high probability.
The active random deadlock checking algorithm is shown in Al-
gorithm 3. Specifically, the algorithm takes an initial state s0 and
a potential deadlock cycle Cycle as inputs. It then executes the
multi-threaded program using the simple random scheduler, except
that it performs some extra work when it encounters a lock acquire
or lock release statement. If a thread t is about to acquire a lock l in
the contextC, then if (abs(t),abs(l), C) is present in Cycle, the
scheduler pauses thread t before t acquires lock l, giving a chance
to another thread, which is involved in the potential deadlock cycle,
to acquire lock l subsequently. This ensures that the system creates
the potential deadlock Cycle with high probability.

Algorithms 3 and 4 describe the active random deadlock
checking algorithm. Algorithm 3 maintains three data structures:
LockSet that maps each thread to a stack of locks that are cur-
rently held by the thread, Context that maps each thread to a
stack of statement labels where the thread has acquired the cur-
rently held locks, and Paused which is a set of threads that has
been paused by DEADLOCKFUZZER. Paused is initialized to an
empty set, and LockSet and Context are initialized to map each
thread to an empty stack.

DEADLOCKFUZZER runs in a loop until there is no enabled
thread. At termination, DEADLOCKFUZZER reports a system stall
if there is at least one active thread in the execution. Note that
DEADLOCKFUZZER only catches resource deadlocks. In each iter-
ation of the loop, DEADLOCKFUZZER picks a random thread t that

Algorithm 3 DEADLOCKFUZZER(s0,Cycle)
1: INPUTS: the initial state s0, a deadlock cycle Cycle
2: s ⇐ s0
3: Paused ⇐ ∅
4: LockSet and Context map each thread to an empty stack
5: while Enabled(s) 6= ∅ do
6: t⇐ a random thread in Enabled(s)\ Paused
7: Stmt⇐ next statement to be executed by t
8: if Stmt = c : Acquire(l) then
9: push l to LockSet[t]

10: push c to Context[t]
11: checkRealDeadlock(LockSet) // see Algorithm 4
12: if ((abs(t), abs(l), Context[t]) /∈ Cycle) then
13: s⇐ Execute(s,t)
14: else
15: pop from LockSet[t]
16: pop from Context[t]
17: add t to Paused
18: end if
19: else if Stmt = c : Release(l) then
20: pop from LockSet[t]
21: pop from Context[t]
22: s⇐ Execute(s,t)
23: else
24: s⇐ Execute(s,t)
25: end if
26: if |Paused| = |Enabled(s)| then
27: remove a random thread from Paused
28: end if
29: end while
30: if Active(s) 6= ∅ then
31: print ‘System Stall!’
32: end if

Algorithm 4 checkRealDeadlock(LockSet)
1: INPUTS: LockSet mapping each thread to its current stack of locks
2: if there exist distinct t1, t2, . . . , tm and l1, l2, . . . , lm such that lm

appears before l1 in LockSet[tm] and for each i ∈ [1,m − 1], li
appears before li+1 in LockSet[ti] then

3: print ‘Real Deadlock Found!’
4: end if

is enabled but not in the Paused set. If the next statement to be ex-
ecuted by t is not a lock acquire or release, t executes the statement
and updates the state as in the simple random scheduling algorithm
(see Algorithm 2). If the next statement to be executed by t is c :
Acquire(l), c and l are pushed to Context[t] and LockSet[t],
respectively. DEADLOCKFUZZER then checks if the acquire of l
by t could lead to a deadlock using checkRealDeadlock in
Algorithm 4. checkRealDeadlock goes over the current lock
set of each thread and sees if it can find a cycle. If a cycle is discov-
ered, then DEADLOCKFUZZER has created a real deadlock. If there
is no cycle, then DEADLOCKFUZZER determines if t needs to be
paused in order to get into a deadlock state. Specifically, it checks if
(abs(t),abs(l), Context[t]) is present in Cycle. If t is added
to Paused, then we pop from both LockSet[t] and Context[t]
to reflect the fact that t has not really acquired the lock l. If the
next statement to be executed by t is c : Release(l), then we pop
from both LockSet[t] and Context[t].

At the end of each iteration, it may happen that the set Paused
is equal to the set of all enabled threads. This results in a state
where DEADLOCKFUZZER has unfortunately paused all the en-
abled threads and the system cannot make any progress. We call
this thrashing. DEADLOCKFUZZER handles this situation by re-
moving a random thread from the set Paused. A thrash implies
that DEADLOCKFUZZER has paused a thread in an unsuitable state.

4 2009/1/12

DEADLOCKFUZZER should avoid thrashing as much as possible in
order to guarantee better performance and improve the probability
of detecting real deadlocks.

2.4 Computing object abstractions
A key requirement of DEADLOCKFUZZER is that it should know
where a thread needs to be paused, i.e. it needs to know if a thread t
that is trying to acquire a lock l in a context C could lead to a dead-
lock. DEADLOCKFUZZER gets this information from iGoodlock,
but this requires us to identify the lock and thread objects that are
the “same” in the iGoodlock and DEADLOCKFUZZER executions.
This kind of correlation cannot be done using the address (i.e. the
unique id) of an object because object addresses change across ex-
ecutions. Therefore, we propose to use object abstraction—if two
objects are same across executions, then they have the same ab-
straction. We assume abs(o) computes the abstraction of an ob-
ject.

There could be several ways to compute the abstraction of an
object. One could use the label of the statement that allocated the
object (i.e. the allocation site) as its abstraction. However, that
would be too coarse-grained to distinctly identify many objects. For
example, if one uses the factory pattern to allocate all thread ob-
jects, then all of the threads will have the same abstraction. There-
fore, we need more contextual information about an allocation site
to identify objects at finer granularity.

Note that if we use a coarse-grained abstraction, then DEAD-
LOCKFUZZER will pause unnecessary threads before they try to
acquire some unnecessary locks. This is because all these unnec-
essary threads and unnecessary locks might have the same abstrac-
tion as the relevant thread and lock, respectively. This will in turn
reduce the effectiveness of our algorithm as DEADLOCKFUZZER
will more often remove a thread from the Paused set due to the
unavailability of any enabled thread. Note that we call this situa-
tion thrashing. Our experiments (see Section 5) show that if we use
the trivial abstraction, where all objects have the same abstraction,
then we get a lot of thrashing. This in turn reduces the probability
of creating a real deadlock. On the other hand, if we consider too
fine-grained abstraction for objects, then we will not be able to tol-
erate minor differences between two executions, causing threads to
pause at fewer locations and miss deadlocks. We next describe two
abstraction techniques for objects that we have found effective in
our experiments.

2.4.1 Abstraction based on k-object-sensitivity
Given a multi-threaded execution and a k > 0, let o1, . . . ok be the
sequence of objects such that for all i ∈ [1, k−1], oi is allocated by
some method of object oi+1. We define absOk (o1) as the sequence
〈c1, . . . , ck〉 where ci is the label of the statement that allocated oi.
absOk (o1) can then be used as an abstraction of o1. We call this
abstraction based on k-object-sensitivity because of the similarity
to k-object-sensitive static analysis [19].

In order to compute absOk (o) for each object o during a multi-
threaded execution, we instrument the program to maintain a map
CreationMap that maps each object o to a pair (o′, c) if o
is created by a method of object o′ at the statement labeled c.
This gives the following straightforward runtime algorithm for
computing CreationMap.

• If a thread t executes the statement c : o = new (o′, T), then
add o 7→ (o′, c) to CreationMap.

One can use CreationMap to compute absOk (o) using the fol-
lowing recursive definition:

absOk (o) = 〈〉 if k = 0 or CreationMap[o] = ⊥
absOk+1(o) = c :: absOk (o′) if CreationMap[o] = (o′, c)

When an object is allocated inside a static method, it will not have
a mapping in CreationMap. Consequently, absOk (o) may have
fewer than k elements.

2.4.2 Abstraction based on light-weight execution indexing
Given a multi-threaded execution, a k > 0, and an object o,
let mn,mn−1, . . . ,m1 be the call stack when o is created, i.e.
o is created inside method m1 and for all i ∈ [1, n − 1], mi

is called from method mi+1. Let us also assume that ci+1 be
the label of the statement at which mi+1 invokes mi and qi+1

be the number of times mi is invoked by mi+1 in the context
mn,mn−1, . . . ,mi+1. Then absIk(o) is defined as the sequence
[c1, q1, c2, q2, . . . , ck, qk], where c1 is the label of the statement at
which o is created and q1 is the number of times the statement is
executed in the context mn,mn−1, . . . ,m1.

1 main() {
2 f o r (i n t i=0; i<5; i++)
3 foo();
4 }
5 void foo() {
6 bar();
7 bar();
8 }
9 void bar() {
10 f o r (i n t i=0; i<3; i++)
11 Object l = new Object();
12 }

For example in the above code, if o is the last object cre-
ated by the execution of main, then absI3(o) is the sequence
[12, 3, 8, 1, 3, 5]. Similarly, if o is the first object created by the ex-
ecution of main, then absI3(o) is the sequence [12, 1, 7, 1, 3, 1].
The idea of computing this kind of abstraction is similar to the
idea of execution indexing proposed in [27], except that we ignore
branch statements and loops. This makes our indexing light-weight,
but less precise.

In order to compute absIk(o) for each object o during a multi-
threaded execution, we instrument the program to maintain a scalar
variable d and two maps Counters and CallStack. The above
data structures are updated at runtime as follows.

• Initialization:

d⇐ 0

for all t and c, Counters[t][d][c]⇐ 0

• If a thread t executes the statement c : Call(m)

Counters[t][d][c]⇐ Counters[t][d][c] + 1

push c to CallStack[t]

push Counters[t][d][c] to CallStack[t]

d⇐ d+ 1

for all c, Counters[t][d][c]⇐ 0

• If a thread t executes the statement c : Return(m)

d⇐ d− 1

pop twice from CallStack[t]

• If a thread t executes the statement c : o =new(o′, T)

Counters[t][d][c]⇐ Counters[t][d][c] + 1

push c to CallStack[t]

push Counters[t][d][c] to CallStack[t]

absIk(o) is the top 2k elements of CallStack[t]

pop twice from CallStack[t]

Note that absIk(o) has 2k elements, but if the call stack has
fewer elements, then absIk(o) returns the full call stack.

5 2009/1/12

1 c l a s s MyThread ex tends Thread {
2 Object l1, l2;
3 boolean flag;
4 MyThread(Object l1,Object l2,boolean b){
5 t h i s.l1 = l1; t h i s.l2 = l2; t h i s.flag = b;
6 }
7
8 p u b l i c vo id run() {
9 i f (flag) { // some long running methods
10 f1();
11 f2();
12 f3();
13 f4();
14 }
15 synchronized(l1) {
16 synchronized(l2) {
17 }
18 }
19 }
20
21 p u b l i c s t a t i c vo id main (String[] args) {
22 Object o1 = new Object();
23 Object o2 = new Object();
24 // Object o3 = new Object();
25 (new MyThread(o1,o2, t rue)).start();
26 (new MyThread(o2,o1, f a l s e)).start();
27 // (new MyThread(o2,o3,false)).start();
28 }
29 }

Figure 1. Simple Example of a Deadlock

3. Examples Illustrating DEADLOCKFUZZER
Consider the multi-threaded Java program in Figure 1. The program
defines a MyThread class that has two locks l1 and l2 and a
boolean flag. The run method of MyThread invokes a number
of long running methods f1, f2, f3, f4 if flag is true and
then it acquires locks l1 and l2 in order. The body of run shows
a common pattern, where a thread runs several statements and
then acquires several locks in a nested way. The main method
creates two lock objects o1 and o2. It also creates two threads
(i.e. instances of MyThread). In the first instance l1 and l2 are
set to o1 and o2, respectively, and flag is set to true. Therefore,
a call to start on this instance will create a new thread which
will first execute several long running methods and then acquire
o1 and o2 in order. A call to start on the second instance of
MyThread will create a new thread which will acquire o2 and o1
in order. We have commented out lines 24 and 27, because they are
not relevant for the current example—we will uncomment them in
the next example.

The example has a deadlock because the locks o1 and o2 are
acquired in different orders by the two threads. However, this dead-
lock will rarely occur during normal testing because the second
thread will acquire o2 and o1 immediately after start, whereas the
first thread will acquire o1 and o2 after executing the four long
running methods. iGoodlock will report this deadlock as a poten-
tial one by observing a single execution that does not deadlock. If
we use the abstraction in Section 2.4.2 with, say k = 10, the report
will be as follows:

([25, 1], [23, 1], [15, 16]), ([26, 1], [22, 1], [15, 16])

where [25, 1], [26, 1], [22, 1], [23, 1] are the abstractions of the first
thread, the second thread, o1, and o2, respectively. [15, 16] denotes
the context in which the second lock is acquired by each thread.

The active random deadlock checker will take this report and
create the real deadlock with probability 1. Specifically, it will
pause both the threads before they try to acquire a lock at line 16.

The above example shows that DEADLOCKFUZZER can create
a rare deadlock with high probability. In practice, the actual prob-
ability may not be 1—DEADLOCKFUZZER can miss a deadlock
because the execution could simply take a different path due to non-
determinism and that path may not exhibit a deadlock. However, in
our experiments we have found that the probability of creating a
deadlock is high on our benchmarks.

The above example does not show the utility of using thread
and object abstractions. To illustrate the utility of object and thread
abstractions, we uncomment the lines at 24 and 27. Now we create a
third lock o3 and a third thread which acquires o2 and o3 in order.
iGoodlock as before will report the same deadlock cycle as in the
previous example. In DEADLOCKFUZZER, if we do not use thread
and object abstractions, then with probability 0.5 (approx), the
third thread will pause before acquiring the lock at line 16. This is
because, without any knowledge about threads and objects involved
in a potential deadlock cycle, DEADLOCKFUZZER will pause any
thread that reaches line 16. Therefore, if the third thread pauses
before line 16, then the second thread will not be able to acquire
lock o2 at line 15 and it will be blocked. DEADLOCKFUZZER will
eventually pause the first thread at line 16. At this point two threads
are paused and one thread is blocked. This results in a thrashing
(see Section 2.3). To get rid of this stall, DEADLOCKFUZZER will
“un-pause” the first thread with probability 0.5 and we will miss the
deadlock with probability 0.25 (approx). On the other hand, if we
use object and thread abstractions, then DEADLOCKFUZZER will
never pause the third thread at line 16 and it will create the real
deadlock with probability 1. This illustrates that if we do not use
thread and object abstractions, then we get more thrashings and the
probability of creating a real deadlock gets reduced.

4. Optimization: avoiding another potential cause
for thrashing

We showed that using object and thread abstractions helps reduce
thrashing; this in turn helps increase the probability of creating a
deadlock. We show another key reason for a lot of thrashings using
the following example and propose a solution to partly avoid such
thrashings.

1: thread1{ 8: thread2{
2: synchronized(l1){ 9: synchronized(l1){
3: synchronized(l2){ 10:
4: } 11: }
5: } 12: synchronized(l2){
6: } 13: synchronized(l1){

14: }
15: }
16: }

The above code avoids explicit thread creation for simplicity of
exposition. iGoodlock will report a potential deadlock cycle in this
code. In the active random deadlock checking phase, if thread1
is paused first and if thread2 has just started, then thread2will
get blocked at line 9 because thread1 is holding the lock l1 and
it has been paused and thread2 cannot acquire the lock. Since
we have one paused and one blocked thread, we get a thrashing.
DEADLOCKFUZZER will “un-pause” thread1 and we will miss
the real deadlock. This is a common form of thrashing that we have
observed in our benchmarks.

In order to reduce the above pattern of thrashing, we make a
thread to yield to other threads before it starts entering a deadlock
cycle. Formally, if (abs(t),abs(l), C) is a component of a poten-
tial deadlock cycle, then DEADLOCKFUZZER will make any thread
t′ with abs(t) = abs(t′) yield before a statement labeled c where
c is the bottommost element in the stack C. For example, in the
above code, DEADLOCKFUZZER will make thread1 yield be-
fore it tries to acquire lock l1 at line 2. This will enable thread2

6 2009/1/12

to make progress (i.e. acquire and release l1 at lines 9 and 11, re-
spectively). thread2 will then yield to any other thread before
acquiring lock l2 at line 12. Therefore, the real deadlock will get
created with probability 1.

5. Implementation and Evaluation
DEADLOCKFUZZER can be implemented for any language that
supports threads and shared memory programming, such as Java or
C/C++ with pthreads. We have implemented DEADLOCKFUZZER
for Java by instrumenting Java bytecode to observe various events
and to control the thread scheduler. DEADLOCKFUZZER can go
into livelocks. Livelocks happen when all threads of the program
end up in the Paused set, except for one thread that does something
in a loop without synchronizing with other threads. In order to
avoid livelocks, DEADLOCKFUZZER creates a monitor thread that
periodically removes those threads from the Paused set that are
paused for a long time.

5.1 Experimental setup
We evaluated DEADLOCKFUZZER on a variety of Java programs
and libraries. We ran our experiments on a dual socket Intel Xeon
2GHz quad core server with 8GB of RAM. The following closed
programs were included in our benchmarks: cache4j, a fast
thread-safe implementation of a cache for Java objects, sor and
hedc, a successive over-relaxation benchmark and a web-crawler
application from ETH [25], jspider, a highly configurable and
customizable Web Spider engine, and jigsaw 2.2.6, W3C’s
leading-edge Web server platform. We created a test harness for
Jigsaw that concurrently generates simultaneous requests to the
web server, simulating multiple clients, and administrative com-
mands (such as “shutdown server”) to exercise the multi-threaded
server in a highly concurrent situation.

The libraries we experimented on include the Java Collections
Framework, Java logging facilities (java.util.logging), and
the Swing GUI framework (javax.swing). Another widely used
library included in our benchmarks is the Database Connection
Pool (DBCP) component of the Apache Commons project. Each
of these libraries contains potential deadlocks that we were able
to reproduce using DEADLOCKFUZZER. We created general test
harnesses to use these libraries with multiple threads. For example,
to test the Java Collections in a concurrent setting, we used the
synchronized wrappers in java.util.Collections.

5.2 Results
Table 1 shows the results of our analysis. The second column
reports the number of lines of source code that was instrumented.
If the program uses libraries that are also instrumented, they are
included in the count. The third column shows the average runtime
of a normal execution of the program without any instrumentation
or analysis. The fourth column is the runtime of iGoodlock (Phase
I). The fifth column is the average runtime of DEADLOCKFUZZER
(Phase II). The table shows that the overhead of our active checker
is within a factor of six, even for large programs. Note that runtime
for the web server Jigsaw is not reported due to its interactive
nature.

The sixth column is the number of potential deadlocks reported
by iGoodlock. The seventh column is the number of cycles that
correspond to real deadlocks after manual inspection. For Jigsaw,
since the Active Checker could reproduce 29 deadlocks, we can
say for sure that Jigsaw has 29 or more real deadlocks. With the
exception of Jigsaw, iGoodlock was precise enough to report only
real deadlocks. The eighth column is the number of deadlock cycles
confirmed by DEADLOCKFUZZER. The ninth column is the empir-
ical probability of DEADLOCKFUZZER reproducing the deadlock
cycle. We ran DEADLOCKFUZZER 100 times for each cycle and

calculated the fraction of executions that deadlocked using DEAD-
LOCKFUZZER. Our experiments show that DEADLOCKFUZZER
reproduces the potential deadlock cycles reported by iGoodlock
with very high probability. We observed that for some Collections
benchmarks, DEADLOCKFUZZER reported a low probability of 0.5
for creating a deadlock. After looking into the report, we found
that in the executions where DEADLOCKFUZZER reported no dead-
lock, DEADLOCKFUZZER created a deadlock which was different
from the potential deadlock cycle provided as input to DEADLOCK-
FUZZER. For comparison, we also ran each of the programs nor-
mally without instrumentation for 100 times to observe if these
deadlocks could occur under normal testing. None of the runs re-
sulted in a deadlock, as opposed to a run with DEADLOCKFUZZER
which almost always went into deadlock. Column 10 shows the av-
erage number of thrashings per run. Columns 9 and 10 show that
the probability of creating a deadlock decreases as the number of
thrashings increases.

We conducted additional experiments to evaluate the effective-
ness of various design decisions for DEADLOCKFUZZER. We tried
variants of DEADLOCKFUZZER: 1) with abstraction based on k-
object-sensitivity, 2) with abstraction based on light-weight exe-
cution indexing, 3) with the trivial abstraction, 4) without context
information, and 5) with the optimization in Section 4 turned off.
Figure 2 summarizes the results of our experiments. Note that the
results in Table 1 correspond to the variant 2, where we use the sec-
ond abstraction, context information, and the optimization in Sec-
tion 4. We found this variant to be the best performer: it created
deadlocks with higher probability than any other variant and it ran
efficiently with minimal number of thrashings.

The first graph shows the correlation between the various vari-
ants of DEADLOCKFUZZER and average runtime. The second
graph shows the probability of creating a deadlock by the vari-
ants of DEADLOCKFUZZER. The third graph shows the average
number of thrashings encountered by each variant of DEADLOCK-
FUZZER. The fourth graph shows the correlation between the num-
ber of thrashings and the probability of creating a deadlock.

The first graph shows that variant 2, which uses execution index-
ing, performs better than variant 1, which uses k-object-sensitivity.
The second graph shows that the probability of creating a dead-
lock is maximum for variant 2 on our benchmarks. The difference
is significant for the Logging and DBCP benchmarks. Ignoring ab-
straction entirely (i.e. variant 3) led to a lot of thrashing in Col-
lections and decreased the probability of creating a deadlock. The
third graph on the Swing benchmark shows that variant 2 has mini-
mum thrashing. Ignoring context information increased the thrash-
ing and the runtime overhead for the Swing benchmark. In the
Swing benchmark, the same locks are acquired and released many
times at many different program locations during the execution.
Hence, ignoring the context of lock acquires and releases leads to a
huge amount of thrashing.

The first graph which plots average runtime for each variant
shows some anomaly. It shows that variant 3 runs faster than variant
2 for Collections—this should not be true given that variant 3
thrashes more than variant 2. We found the following reason for
this anomaly. Without the right debugging information provided
by iGoodlock, it is possible for DEADLOCKFUZZER to pause at
wrong locations but, by chance, introduce a real deadlock which
is unrelated to the deadlock cycle it was trying to reproduce. This
causes the anomaly in the first graph where the runtime overhead
for Collections is lower when abstraction is ignored, but the number
of thrashings is more. The runtime is measured as the time it takes
from the start of the execution to either normal termination or
when a deadlock is found. DEADLOCKFUZZER with our light-
weight execution indexing abstraction faithfully reproduces the
given cycle, which may happen late in the execution. For more

7 2009/1/12

Program name Lines of Avg. Runtime in msec. # Deadlock cycles Probability of Avg. # of
code Normal iGoodlock DF iGoodlock Real Reproduced reproduction Thrashes

cache4j 3,897 2,045 3,409 - 0 0 - - -
sor 17,718 163 396 - 0 0 - - -
hedc 25,024 165 1,668 - 0 0 - - -
jspider 10,252 4,622 5,020 - 0 0 - - -
Jigsaw 160,388 - - - 283 ≥ 29 29 0.214 18.97
Java Logging 4,248 166 272 493 3 3 3 1.00 0.00
Java Swing 337,291 4,694 9,563 28,052 1 1 1 1.00 4.83
DBCP 27,194 603 1,393 1,393 2 2 2 1.00 0.00
ArrayList 17,633 2,836 3,101 6,141 9 9 9 1.00 0.00
LinkedList 17,663 2,909 3,180 6,007 9 9 9 0.99 0.00
Stack 17,633 2,842 3,451 9,061 9 9 9 0.99 0.00
HashMap 18,911 2,226 2,511 2,802 4 4 4 0.53 0.00
WeakHashMap 18,911 2,231 2,449 2,918 4 4 4 0.53 0.15
LinkedHashMap 18,911 2,261 2,444 3,126 4 4 4 0.53 0.00
IdentityHashMap 18,911 2,243 3,064 2,858 4 4 4 0.50 0.03
TreeMap 18,911 2,223 2,513 2,786 4 4 4 0.50 0.00

Table 1. Experimental results. (Context + 2nd Abstraction + Yield optimization)

org.w3c.jigsaw.http.httpd {
384: SocketClientFactory factory;
1442: void cleanup(...) {
1455: factory.shutdown();}
1711: void run() {
1734: cleanup(...);}}

org.w3c.jigsaw.http.socket.SocketClient {
42: SocketClientFactory pool;
111: void run() {
152: pool.clientConnectionFinished(...);}}

org.w3c.jigsaw.http.socket.SocketClientFactory {
130: SocketClientState csList;
574: synchronized boolean decrIdleCount() {...}
618: boolean clientConnectionFinished(...) {
623: synchronized (csList) {
626: decrIdleCount();}}
867: synchronized void killClients(...) {
872: synchronized (csList) {...}}
902: void shutdown() {
904: killClients(...);}
}

Figure 3. Deadlock in Jigsaw

imprecise variants such as the one ignoring abstraction, a deadlock
early in the execution may be reproduced wrongfully, thus reducing
the runtime.

The fourth graph shows that the probability of creating a dead-
lock goes down as the number of thrashings increases. This val-
idates our claim that thrashings are not good for creating dead-
locks with high probability and our variant 2 tries to reduce such
thrashings significantly by considering context information and ob-
ject abstraction based on execution indexing, and by applying the
optimization in Section 4.

5.3 Deadlocks found
DEADLOCKFUZZER found a number of previously unknown and
known deadlocks in our benchmarks. We next describe some of
them.

Two previously unknown deadlocks were found in Jigsaw. As
shown in Figure 3, when the http server shuts down, it calls cleanup
code that shuts down the SocketClientFactory. The shut-
down code holds a lock on the factory at line 867, and in turn at-

tempts to acquire the lock on csList at line 872. On the other
hand, when a SocketClient is closing, it also calls into the factory
to update a global count. In this situation, the locks are held in
the opposite order: the lock on csList is acquired first at line
623, and then on the factory at line 574. Another similar deadlock
occurs when the SocketClient kills an idle connection. These also
involve the same locks, but are acquired at different program loca-
tions. iGoodlock provided precise debugging information to distin-
guish between the two contexts of the lock acquires.

The deadlock in the Java Swing benchmark occurs when
a program synchronizes on a JFrame object, and invokes
the setCaretPosition() method on a JTextArea ob-
ject that is a member of the JFrame object. The sequence
of lock acquires that leads to the deadlock is as follows. The
main thread obtains a lock on the JFrame object, and an
EventQueue thread which is also running, obtains a lock
on a javax.swing.plaf.basic.BasicTextUI$BasicCaret object
at line number 1304 in javax.swing.text.DefaultCaret.java.
The main thread then tries to obtain a lock on the
javax.swing.plaf.basic.BasicTextUI$BasicCaret object at
line number 1244 in javax.swing.text.DefaultCaret.java, but
fails to do so since the lock has not been released by the
EventQueue thread. The EventQueue thread tries to ac-
quire the lock on the JFrame object at line number 407 in
javax.swing.RepaintManager.java but cannot since it is still
held by the main thread. The program goes into a dead-
lock. This deadlock corresponds to a bug that has been reported at
http://bugs.sun.com/view bug.do?bug id=4839713.

One of the deadlocks that we found in the DBCP
benchmark occurs when a thread tries to create a
PreparedStatement, and another thread simultaneously
closes another PreparedStatement. The sequence of lock
acquires that exhibits this deadlock is as follows. The first
thread obtains a lock on a Connection object at line number
185 in org.apache.commons.dbcp.DelegatingConnection.java.
The second thread obtains a lock on a
KeyedObjectPool object at line number 78 in
org.apache.commons.dbcp.PoolablePreparedStatement.java.
The first thread then tries to obtain a lock on the
same KeyedObjectPool object at line number 87 in
org.apache.commons.dbcp.PoolingConnection.java, but cannot ob-
tain it since it is held by the second thread. The second thread tries
to obtain a lock on the Connection object at line number 106 in
org.apache.commons.dbcp.PoolablePreparedStatement.java, but

8 2009/1/12

Figure 2. Performance and effectiveness of variations of DEADLOCKFUZZER

cannot acquire it since the lock has not yet been released by the
first thread. The program, thus, goes into a deadlock.

5.4 Imprecision in Goodlock
Since DEADLOCKFUZZER is not complete, if it does not classify
a deadlock reported by iGoodlock as a real deadlock, we cannot
definitely say that the deadlock is a false warning. For example, in
the Jigsaw benchmark, the informative Goodlock algorithm re-
ported 283 deadlocks. Of these 29 were reported as real deadlocks
by the Active Checker. We manually looked into the rest of the
deadlocks to see if they were false warnings by iGoodlock, or real
deadlocks that were not caught by the active random checker. For
18 of the cycles reported, we can say with a high confidence that
they are false warnings reported by the iGoodlock algorithm. These
cycles involve locks that are acquired at the same program state-
ments, but by different threads. There is a single reason why all of
these deadlocks are false positives. The deadlocks can occur only if
a CachedThread invokes its waitForRunner() method be-
fore that CachedThread has been started by another thread. This
is clearly not possible in an actual execution of Jigsaw. Since
iGoodlock does not take the happens-before relation between lock
acquires and releases into account, it reports these spurious dead-
locks. For the rest of the cycles reported by iGoodlock, we can-
not say with reasonable confidence if they are false warnings, or if
they are real deadlocks that were not caught by the active random
checker.

6. Other Related Work
We have already compared our proposed technique with several
existing techniques for detecting deadlocks in multi-threaded pro-
grams. In this section, we discuss several other related work, and
elaborate on some that we have previously mentioned.

Recently, several random testing techniques have been pro-
posed [8, 23] that introduce noise (using yield, sleep, wait
(with timeout)) to a program execution to increase the possibility of
the exhibition of a synchronization bug. Although these techniques
have successfully detected bugs in many programs, they have a
limitation. These techniques are not systematic as the primitives
sleep(), yield(), priority() can only advise the sched-
uler to make a thread switch, but cannot force a thread switch. As
such they cannot pause a thread as long as required to create a real
deadlock.

More recently, a few techniques have been proposed to con-
firm potential bugs in concurrent programs using random testing.
Havelund et al. [3] uses a directed scheduler to confirm that a
potential deadlock cycle could lead to a real deadlock. However,
they assume that the thread and object identifiers do not change
across executions. Similarly, ConTest [20] uses the idea of intro-
ducing noise to increase the probability of the occurrence of a
deadlock. It records potential deadlocks using a Goodlock algo-
rithm. To check whether a potential deadlock can actually occur,

9 2009/1/12

it introduces noise during program execution to increase the prob-
ability of exhibition of the deadlock. Our work differs from Con-
Test [20] in the following ways. ConTest [20] uses only locations in
the program to identify locks. We use context information and ob-
ject abstractions to identify the run-time threads and locks involved
in the deadlocks; therefore, our abstractions give more precise in-
formation about run-time objects. Moreover, we explicitly control
the thread scheduler to create the potential deadlocks, instead of
adding timing noise to program execution. DEADLOCKFUZZER,
being explicit in controlling scheduler and in identifying objects
across executions, found real deadlocks in large benchmarks with
high probability.

RaceFuzzer [22] proposed to use an active randomized sched-
uler to confirm race conditions with high probability. RaceFuzzer
only uses statement locations to identify races and does not use ob-
ject abstraction or context information to increase the probability
of race detection. As shown in Section 5.2, simple location infor-
mation is not good enough for creating real deadlocks with high
probability.

A couple of techniques have been proposed to prevent dead-
locks from happening during program execution, and to recover
from deadlocks during execution. When a buggy program executes
and deadlocks, Dimmunix [16] records the deadlock pattern. Dur-
ing program execution, it tries to prevent the occurrence of any of
the deadlock patterns that it has previously observed. Rx [21] pro-
poses to recover programs from software failures, including dead-
locks, by rolling them back to a recent checkpoint, and re-executing
the programs in a modified environment.

7. Conclusion
Existing techniques for deadlock detection, based on static and dy-
namic analysis, could predict potential deadlocks, but could not
verify if they were real deadlocks. Going through all of these warn-
ings and reasoning about them manually could be time consuming.
DEADLOCKFUZZER automates such verification—if a real dead-
lock is created by DEADLOCKFUZZER, the developer no longer
needs to verify the deadlock manually. However, DEADLOCK-
FUZZER is incomplete—if a deadlock is not confirmed to be real
by DEADLOCKFUZZER, the developer cannot ignore the deadlock.
Nevertheless, DEADLOCKFUZZER has managed to find all pre-
viously known deadlocks in large benchmarks and it has discov-
ered previously unknown deadlocks. We believe that DEADLOCK-
FUZZER is an indispensable and practical tool that complements
both static and predictive dynamic analysis.

References
[1] R. Agarwal, L. Wang, and S. D. Stoller. Detecting potential

deadlocks with static analysis and runtime monitoring. In Parallel
and Distributed Systems: Testing and Debugging 2005, 2005.

[2] C. Artho and A. Biere. Applying static analysis to large-scale,
multi-threaded Java programs. In Proceedings of the 13th Australian
Software Engineering Conference (ASWEC’01), pages 68–75, 2001.

[3] S. Bensalem, J.-C. Fernandez, K. Havelund, and L. Mounier.
Confirmation of deadlock potentials detected by runtime analysis.
In PADTAD’06, pages 41–50, 2006.

[4] S. Bensalem and K. Havelund. Scalable dynamic deadlock analysis of
multi-threaded programs. In Parallel and Distributed Systems: Testing
and Debugging 2005 (PADTAD’05), 2005.

[5] C. Boyapati, R. Lee, and M. Rinard. Ownership types for safe
programming: preventing data races and deadlocks. In 17th ACM
SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, pages 211–230, 2002.

[6] S. Chaki, E. Clarke, J. Ouaknine, N. Sharygina, and N. Sinha.
Concurrent software verification with states, events, and deadlocks.
Formal Aspects of Computing, 17(4):461–483, 2005.

[7] C. Demartini, R. Iosif, and R. Sisto. A deadlock detection tool
for concurrent java programs. Software - Practice and Experience,
29(7):577–603, 1999.

[8] O. Edelstein, E. Farchi, Y. Nir, G. Ratsaby, , and S. Ur. Multithreaded
Java program test generation. IBM Systems Journal, 41(1):111–125,
2002.

[9] D. R. Engler and K. Ashcraft. Racerx: effective, static detection of
race conditions and deadlocks. In 19th ACM Symposium on Operating
Systems Principles (SOSP), pages 237–252, 2003.

[10] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and
R. Stata. Extended static checking for java. In PLDI ’02: Proceedings
of the ACM SIGPLAN 2002 Conference on Programming language
design and implementation, pages 234–245. ACM, 2002.

[11] P. Godefroid. Model checking for programming languages using
verisoft. In 24th Symposium on Principles of Programming
Languages, pages 174–186, 1997.

[12] J. Harrow. Runtime checking of multithreaded applications with visual
threads. In 7th International SPIN Workshop on Model Checking and
Software Verification, pages 331–342, 2000.

[13] K. Havelund. Using runtime analysis to guide model checking of java
programs. In 7th International SPIN Workshop on Model Checking
and Software Verification, pages 245–264, 2000.

[14] K. Havelund and T. Pressburger. Model Checking Java Programs
using Java PathFinder. Int. Journal on Software Tools for Technology
Transfer, 2(4):366–381, 2000.

[15] G. Holzmann. The Spin model checker. IEEE Transactions on
Software Engineering, 23(5):279–295, 1997.

[16] H. Jula, D. Tralamazza, C. Zamfir, and G. Candea. Deadlock
immunity: Enabling systems to defend against deadlocks. In
Proceedings of the 8th USENIX Symposium on Operating Systems
Design and Implementation (OSDI’08), 2008.

[17] L. Lamport. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM, 21(7):558–565, 1978.

[18] S. Masticola. Static detection of deadlocks in polynomial time. PhD
thesis, Rutgers University, 1993.

[19] A. Milanova, A. Rountev, and B. Ryder. Parameterized object
sensitivity for points-to analysis for Java. ACM Transactions on
Software Engineering and Methodology, 14(1):1–41, Jan. 2005.

[20] Y. Nir-Buchbinder, R. Tzoref, and S. Ur. Deadlocks: From exhibiting
to healing. In 8th Workshop on Runtime Verification, 2008.

[21] F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou. Rx: treating bugs as
allergies—a safe method to survive software failures. In SOSP ’05:
Proceedings of the twentieth ACM symposium on Operating systems
principles, pages 235–248. ACM, 2005.

[22] K. Sen. Race directed random testing of concurrent programs. In
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI’08), 2008.

[23] S. D. Stoller. Testing concurrent Java programs using randomized
scheduling. In Workshop on Runtime Verification (RV’02), volume 70
of ENTCS, 2002.

[24] C. von Praun. Detecting Synchronization Defects in Multi-Threaded
Object-Oriented Programs. PhD thesis, Swiss Federal Institute of
Technology, Zurich, 2004.

[25] C. von Praun and T. R. Gross. Object race detection. In 16th ACM
SIGPLAN conference on Object oriented programming, systems,
languages, and applications (OOPSLA), pages 70–82. ACM, 2001.

[26] A. Williams, W. Thies, and M. Ernst. Static deadlock detection for
Java libraries. In ECOOP 2005 — 19th European Conference on
Object-Oriented Programming (ECOOP’05), pages 602–629, 2005.

[27] B. Xin, W. N. Sumner, and X. Zhang. Efficient program execution
indexing. In ACM SIGPLAN conference on Programming language
design and implementation, pages 238–248, 2008.

10 2009/1/12

