
Proving program termination

Byron Cook





1

Foundations

Our goal in this book is to build sofware tools that automatically search
for proofs of program termination in mathematical logic. However, be-
fore delving directly into strategies for automation, we must first in-
troduce some notation and establish a basic foundation in the areas of
program semantics, logic and set theory. We must also discuss how
programs can be proved terminating using manual techniques. The con-
cepts and notation introduced in this chapter will be used throughout
the remainder of the book.

1.1 Program termination and well-founded relations

For the purpose of this book it is convenient to think of the text of a
computer program as representing a relation that specifies the possible
transitions that the program can make between configurations during
execution. We call this the program’s transition relation. Program exe-
cutions can be thought of as traversals starting from a starting config-
uration and then moving from configuration to configuration as allowed
by the transition relation. A program is called terminating if all the ex-
ecutions allowed by the transition relation are finite. We call a program
non-terminating if the transition relation allows for at least one infinite
execution.

Treating programs as relations is conveinant for our purpose, as in
this setting proving program termination is equivliant to proving the
program’s transition relation well-founded— thus giving us access to the
numerous well established techniques from mathematical logic used to
establish well-foundedness.

In the next few sections we define some notation, discuss our repre-
sentation for program configurations, and give some basic results related

3



4 Foundations

to to relations and well-foundedness. In a later section we will define a
representation for computer programs and discuss manual methods for
proving termination.

1.2 Program states, sets and relations

We will assume that a set of possible program variables, Var, is infinite,
and formed of a subset of the possible strings expressed in sans-serif font
(e.g. x ∈ Var). Let Var be the set of variables drawn from Var and
then boxed (e.g. if x ∈ Var, then x ∈ Var). These boxed variables
are usually used when two distinct sets of variables are needed. We
will assume that, on a set V , V always defines a one-to-one and onto
mapping. We also assume that −−1 is the inverse of − . That is, if
v = x , then v

−1 = x. We will use the symbol − to represent the
function that boxes variables: − (x) , x .

The set of possible program values, Val, will be an under-specified
set of values which can include Z and other arithmetic constants.

Throughout this book we will be concentrating on program config-
urations. We call these configurations states. States will be encoded
as partial finite mappings from variables to values, Var

fin
⇀ Val. For

example {x 7→ 5, y 7→ −2} is the state in which x = 5, y = −2, and
undefined for other variables. Let S be the set of all such mappings
Var

fin
⇀ Val. The observant reader may have noticed that our formula-

tion of program states does not currently allow for programs with data
structures—this will come in later chapters.

Definition 1 (Relational application, composition, closure) As-
sume that R ⊆ S × T and X ⊆ S, we define the image of R on X

(notationally, R(X)) as:

R(X) , {y | x ∈ X ∧ (x, y) ∈ R}

Note that R(X) ⊆ T . If a ∈ S and R ⊆ S × T then we define R(a) ,
R({a}). Let ; be relational composition where

R; Q , {(a, b) | ∃c. (a, c) ∈ R ∧ (c, b) ∈ Q}

When k > 0, Rk , R; Rk−1, and R0 , {(a, b) | a = b}. The non-reflexive
and reflexive transitive closure of R are defined respectively:

R+ , {(a, b) | ∃n > 0.(a, b) ∈ Rn}



1.3 Symbolic formulae, sets and relations 5

R∗ , {(a, b) | ∃n ≥ 0.(a, b) ∈ Rn}
We define relational inverse as

R−1 , {(a, b) | (b, a) ∈ R}
If Q is a set of states (i.e. Q ⊆ S) then ¬Q , S −Q

Definition 2 ( − , − ) Assume that R ⊆ A × B. We define left
projection R ⊆ A as

R , {a | ∃b. (a, b) ∈ R}
We define right projection R ⊆ B as

R , {b | ∃a. (a, b) ∈ R}

Definition 3 ( − ) We define the lifting of R via a function f , nota-
tionally Rf , to be:

Rf , {(s, t) | (f(s), f(t)) ∈ R}

1.3 Symbolic formulae, sets and relations

When describing sets of states we will—depending on the context—
use one of two possible representations: symbolic formulae and explicit
sets. For example, the symbolic formula x > 0 will represent the set of
states {s | s(x) > 0}. Formally, we define a semantic meaning [[−]] from
formulae to the sets that that represent (i.e., [[x > 0]] = {s | s(x) > 0}).

Definition 4 ([[−]]) Assume a formula f and a function g whose domain
is the variables of f . We define f [g] as the substitution of variables in f

via g. We define the meaning of f as

[[f ]] = {s | f [s]}

Example 1 Consider the formula x > 0. This formula represents the
set of states

[[x > 0]] = {s | (x > 0)[s]}
= {s | s(x) > 0}



6 Foundations

Now consider the state {x 7→ 5, y 7→ −2}. This state is in [[x > 0]],
because

(x > 0)({x 7→ 5, y 7→ −2}) ⇔ 5 > 0 ⇔ true

The state {x 7→ 0, z 7→ 2} is not in [[x > 0]], as

(x > 0)({x 7→ 0, z 7→ 2}) ⇔ 0 > 0 ⇔ false

?

When discussing relations over states we will, again, use either sym-
bolic formulae or explicit sets—in this case the sets will be over pairs of
states. The symbolic formulae will be over distinct sets of variables—
usually Var and Var. For example, we would use the symbolic formula
x > x to represent the set of pair of states {(s, t) | s(x) > t(x)}. As we
did for sets, we define a semantic meaning, [[[−]]] (Note that the relational
semantics [[[−]]] is subtely different than the semantics for states [[−]]).

Definition 5 ([[[−]]]) Assume that we are defining relations over states
whose domain is the set of variables V . Assume that we have two map-
pings ρ : X → V , and ρ′ : Y → V , where X ∩ Y = ∅. Assume a formula
f over variables X and Y . We define the relational meaning of f as

[[[f ]]] = {(s, t) | f [(s ◦ ρ) ∪ (t ◦ ρ′)]}
Unless explicitly noted otherwise, we will usually assume that ρ(x) = x

and ρ′(x) = x.

Example 2 Consider the formula x > x, which represents

[[[ x > x]]] = {(s, t) | ( x > x)[(s ◦ ρ) ∪ (t ◦ ρ′)]}
= {(s, t) | ( x > x)[(s ◦ −) ∪ t]}

The pair of states ({x 7→ 3, z 7→ 2}, {x 7→ 0, y 7→ 2}) are in [[[ x > x]]]:

( x > x)[({x 7→ 3, z 7→ 2} ◦ −) ∪ {x 7→ 0, y 7→ 2}]
⇔ ( x > x)[({ x 7→ 3, z 7→ 2} ∪ {x 7→ 0, y 7→ 2}]
⇔ ( x > x)[({ x 7→ 3, z 7→ 2, x 7→ 0, y 7→ 2}]
⇔ 3 > 0
⇔ true

?

Observation 1 For all formulae f , g over variables Var,

(i) [[true]] = S



1.4 Well-ordered sets and well-founded relations 7

(ii) [[false]] = ∅
(iii) [[f ∧ g]] ⇔ [[f ]] ∩ [[g]]
(iv) [[f ∨ g]] ⇔ [[f ]] ∪ [[g]]
(v) [[f ⇒ g]] ⇔ [[f ]] ⊆ [[g]]
(vi) [[¬f ]] = ¬[[f ]]

Observation 2 For all formulae f , g over variables V and V , and
formulea A, B over variables V , V ′ ∩ (V ∪ V ) = ∅,

(i) [[[true]]] = S × S
(ii) [[[false]]] = ∅
(iii) [[[∀V.∃ V . f ]]] = [[[f ]]]

(iv) [[[∃V. f ]]] = [[[f ]]]
(v) [[[f ∧ g]]] ⇔ [[[f ]]] ∩ [[[g]]]
(vi) [[[f ∨ g]]] ⇔ [[[f ]]] ∪ [[[g]]]
(vii) [[[f ⇒ g]]] ⇔ [[[f ]]] ⊆ [[[g]]]
(viii) [[[¬f ]]] = ¬[[[f ]]]
(ix) [[[∃ V . X ∧R]]] = [[[R]]]([[X]])
(x) [[A]]× [[B]] = [[[ A ∧B]]]
(xi) [[[R]]]; [[[Q]]] = [[[∃V ′. R[V/V ′] ∧Q[ V /V ′] ]]]

From Observations 2(iv) and 2(iii), we will abuse notation and use −
and − on formulae as well as relations.

Due to Observations 1 and 2, we can use automatic decision proce-
dures on formulae to establish properties about the sets and relations
that they represent. For example, if we prove the validity of the formula
∀x, x . x = x − 1 ⇒ x < x with an automatic decision procedure, then
we know that [[[x = x − 1]]] ⊆ [[[x < x ]]].

1.4 Well-ordered sets and well-founded relations

In this section we describe what it means for a set to be well ordered,
and a relation to be well founded.

Definition 6 (Total order) The structure (S,≥) forms a total order
iff for all a, b, c ∈ S

• a ≥ a (reflexive),
• a ≤ b and a ≥ b then a = b (antisymmetry),
• If a ≥ b and b ≥ c then a ≥ c (transitivity),
• a ≤ b or a ≥ b (totality),



8 Foundations

Definition 7 (Well order) (S,≥) forms a well order iff it is a total
order and every nonempty subset of S has a least element.

Example 3 The natural numbers, N, are a well-ordered set, as in the
worst case 0 is the least element of any subset. The integers, Z, are not
well ordered because there is no least element. However, for any integer
constant b ∈ Z, the set {x | x ∈ Z ∧ x ≥ b} is a well-ordered set. ?

For convienance we will use the notation ≥b to represent the relation

x ≥b y , x ≥ y ∧ y ≥ b

This allows us to create well orders from sets like the integers,

Example 4 The non-negative real numbers with relation ≥ are not
a well-ordered set because there there is no least element in the open
interval (0,1). The non-negative real numbers can be made into a well-
ordered set when paired with an alternative comparison, for example:
as x ≥′ y , x ≥ y + 0.0001 ∨ x = y. ?

For convienance we will use the notation ≥b to represent the relation

x ≥b y , x ≥ y + b

This allows us to create well orders from sets like the positive reals.

Definition 8 (Sequences) We say that s is an S-sequence if s =
〈s1, s2, . . .〉 and each si ∈ S. A finite sequence s = 〈s1, s2, . . . , sn〉 will
have a last index last(s) = sn. Let R ⊆ S × S. A finite sequence is
said to be permitted by R iff ∀i ∈ {1, . . . last(s)− 1}. (si, si+1) ∈ R. An
infinite sequence is permitted by R iff ∀i. i > 0 ⇒ (si, si+1) ∈ R. Let
I ⊆ S. We say that s is permitted by a transition system P = (I, R, S)
(defined properly in Definition 12) if and only if s is permitted by R and
s1 ∈ I.

Definition 9 (Well-founded relations) A binary relation R ⊆ S×S

is well-founded iff it does not permit infinite sequences.

Example 5 The x > x ∧ x > 0 represents a well-founded relation
if the variables range over the integers or natural numbers, but not if
the variables range over the reals. The reason for well-foundedness in
the integers or naturals is that, if we apply the relation point-wise to
any sequence of naturals or integers, we’ll see that the values along



1.4 Well-ordered sets and well-founded relations 9

the sequence are forced to go down towards (and eventually pass) a
bound. Thus no permitted sequence can be infinite. In the reals the
constraint x > x does not require the value to go down enough to
guarantee eventual progress to 0. The formula x ≥ x + 1 ∧ x > 0, on
the other hand, represents a relation that is well founded in all three
interpretations. ?

Theorem 1 Assume that (S,≥) is a total order. (S,≥) is a well order
iff the relation x > y (defined as x > y , x ≥ y ∧ x 6= y) is well founded
on S-sequences.

Proof

Well-ordered set ⇒ Well-founded relation: By a contrapositive argu-
ment, assume that > is not well founded, meaning in this case
that there is an infinitely descending chain of S-elements. In
this case there can be no least element. X

Well-ordered set ⇐ Well-founded relation: Again, by a contrapositive
argument. Assume that the infinite S-subset S′ has no least
element (the fact that every finite set has a least element can be
established using the fact that S is a total order). Let s1 ∈ S′.
Since s1 cannot be minimal we know that there exists an s2 ∈ S′

such that s1 > s2, and an s3 ∈ S′ such that s2 > s3, etc.
Therefore, using the somewhat controversial axiom of depen-
dent choice we can show that there exists an infinite sequence
of S′-elements that is permitted by > X

Observation 3 If Q is well founded and R ⊆ Q, then R is well founded.

Proof By contradiction. Assume that R is not well founded, but Q is.
Therefore there exists an infinite sequence s such that ∀i.(si, si+1) ∈ R.
Because R ⊆ Q, we know that ∀i.(si, si+1) ∈ Q, thus contradicting the
claim that Q is well founded.

Corollary 1 If R is not well founded and R ⊆ Q, then Q is not well
founded.

Remark on Cantor’s ordinal numbers. Cantor’s ordinal number-
sare often used in the literature discussing well-ordered sets. Cantor’s or-
dinals are—in effect—a canonical representation for sets of well-ordered



10 Foundations

sets who are all related in size. (e.g. the natural numbers and any iso-
morphic set can be represented by the ordinal number ω). In this book
we avoid the ordinals for the reason that, although they can make a
fundamental discussion more concise, they come at a great initial cost.
Many distracting ideas and notation would need to be introduced.

1.5 Ranking functions and ranking relations

The traditional method of proving a relation R ⊆ S × S well founded is
to find a map from the structure (R,S) to some known well-ordered
set (≥, T ) and then prove that the map is structure-preserving (i.e.
that it is a homomorphism). Since we know that the relation > (where
x > y , x ≥ y ∧ x 6= y) on T is well founded, by the properties of
homomorphisms and Observation 3, we know that R too is well founded.
Turing’s maps are typically called ranking functions.

Definition 10 (Ranking function) A mapping f with a range to a
well-ordered set is called a ranking function.

Definition 11 (Ranking relation) Let f : X → Y be a ranking
function, where (Y,≥) is a well order. We say that >f is f ’s ranking re-
lation. In some cases we will want to use >f to represent a formula, and
in others to represent the relation explicitely. We will switch between
these representations without mention unless the choice is not clear from
the context.

Observation 4 For any ranking function f to a well order (Y,≥), the
relation >f is well founded.

Proof We know that there exists some Y such that f : X → Y such
that (≥, Y ) is a well-ordered set. Thus, due to Theorem 1, we know
that > is a well-founded relation on sequences drawn from Y . By way of
contradiction, assume that s1, s2, s3, . . . is an infinite sequence permitted
by >f . This gives rise to the infinite sequence of Y -elements f(s1) >

f(s2) > f(s3) > . . .. But this infinite sequence is not permitted, as
(≥, Y ) is well ordered.

Example 6 Consider the example relation

R , x > 0 ∧ y > 0 ∧ x = x − 1 ∧ y = y + 1



1.6 Transition systems and supporting invariants 11

Assume that x and y range over the integers. To prove R well-founded
we can use the ranking function f(s) = s(x) and bound 0 to construct
>0f :

>0f = {(s, t) | f(s) > f(t) ∧ f(s) ≥ 0}
= {(s, t) | s(x) > t(x) ∧ s(x) ≥ 0}
= [[[ x > x ∧ x ≥ 0]]]

To prove that the inclusion [[[R]]] ⊆ >0f holds we can use a decision
procedure to prove the validity of the formula: ∀x, y, x , y . R ⇒ x >

x ∧ x ≥ 0. By Observation 2, we know that [[[R]]] ⊆ >0f , thus proving
[[[R]]] well founded. ?

1.6 Transition systems and supporting invariants

Definition 12 (Transition systems) We say that P is a transition
system if P = (I,R, S), where S is the (possibly infinite) set of program
states represented as finite partial functions from Vars to Vals, I ⊆ S,
and R ⊆ S × S. We call I the initial states, and R the update relation.

Definition 13 (Reachable states) We call R∗(I) the reachable states
of the transition system P = (I, R, S).

Definition 14 (Relational restrictions) We use the notation R S

to denote R when restricted to the cartesian product of S:

R S , R ∩ (S × S)

We define R S to be R with the image restricted to S:

R S , R ∩ (S × R)

It should be clear that, for all R and S, R S ⊆ R S .

Definition 15 (Transition relation) Let P = (I, R, S). We use the
notation R I to denote P ’s transition relation:

R I , R R∗(I)

The common wisdom when proving a relation well founded is that one
must find both a ranking function and a supporting invariant. This is
due to the fact that, in practice, relations are often only well founded



12 Foundations

when restricted to the states reachable by the relation from some set of
initial states—that is, a terminating transition system’s update relation
is often itself not well founded.

Observation 5 For all R and I, R I = R R∗(I) = R R∗(I).

Proof R I = R R∗(I) by definition. R R∗(I) = R R∗(I) because
R(R∗(I)) ⊆ R∗(I).

Definition 16 (Invariant) A set of states Q is an invariant of a tran-
sition system (R, I, S) iff R∗(I) ⊆ Q. An invariant is called an inductive
invariant if it can be proved invariant by induction i.e., showing that
I ⊆ Q and R(Q) ⊆ Q.

Note that, because R I ⊆ R, if R is well founded then R I is also
well founded. Clearly R∗(I) is the strongest possible invariant, but it
is not computable in theory and very difficult to compute in practice.
Instead we usually look for a weaker (but easier to find) invariant Q that
is strong enough to prove relations well founded. Because, by definition,
R∗(I) ⊆ Q, then R I ⊆ R Q ⊆ R Q. Thus, if R Q or R Q are well
founded, we know that R I is well founded.

Example 7 Consider the relation R , x > 0 ∧ x = x + y ∧ y = y ,
where the variables range over the integers. R is not well founded if
y ≥ 0. However, if we let the initial set of states be I , y ≤ −1, then
R I is well founded. To prove this we can let Q = y ≤ −1. Luckily,
in this case, Q is an inductive invariant, meaning that we can show Q

invariant simply via induction (i.e. [[I]] ⊆ [[Q]] and R(Q) ⊆ Q) To prove
that [[Q]]× [[Q]]∩ [[[R]]] is well founded we can show that Q ∧Q∧R ⇒ >0x

(where the free variables are universilly quantified).
?

1.7 Composing well-founded relations

In many cases, constructing a ranking function for a complex relation
can be a subtle art. As we have seen: once we know a ranking function,
proving the necessary subset inclusion is usually not difficult—finding
the ranking function argument is the hard part. This section describes a
method for constructing arguments of well-foundedness via the compo-
sition of small sub-arguments. As we will see later, the method makes



1.8 Proving well-foundeness by induction 13

the search for and construction of arguments easier, but makes checking
the argument more difficult. Modern approaches are often based on this
result and thus will be used heavily in subsequent chapters.

Theorem 2 Let be a binary relation R ⊆ S × S. Let Q1, Q2, . . . Qn

be a finite set of binary relations Qi ⊆ S × S such that each Qi is well
founded. R is well founded iff R+ ⊆ Q1 ∪Q2 ∪ . . . ∪Qn.

It is important to note that the union of well-founded relations is not
necessarily well founded, thus making Theorem 2 a little surprising. To
see why this is true consider the relations P , 0 < x ∧ x < x and
Q , 100 > x∧ x > x . Both P and Q are well founded, but P ∪Q is not.
To see that P ∪Q is not well founded consider the case where s(x) = 5.
In this case (s, s) ∈ (P ∪Q)2, thus making {s | s(x) = 5∧ s ∈ S} a valid
recurrence set for (P ∪ Q)2. The use of transitive closure is the key to
Theorem 2’s soundness, as it rules out cases like this.

Example 8 Consider the relation

R , ( x > 0 ∧ y > 0 ∧ x = x − 1 ∧ y = y )
∨ ( x > 0 ∧ y > 0 ∧ x = x ∧ y = y − 1)

We can prove R well founded by showing R ⊆ >0x+y. Alternatively we
use Theorem 2 and establish well-foundeness via proof that R+ ⊆ >0x∪
>0y. Note that we cannot prove the inclusion R+ ⊆ >0x ∪ >0y directly
with any known decision procedure, as they do not support transitive
closure (transitive closure for infinite-state systems is undecidable in
theory, and difficult in practice). In a later chapter we will show how
techniques from program analysis can be adapted to address this class
of question.

Note that finding >0x and >0y is, in a sense, easier than >0x+y. The
reason is that if we can often find the former argument by looking in-
dividually at R’s disjuncts: >0x is motivated by looking at the first
disjunct in R (i.e. x > 0 ∧ y > 0 ∧ x = x − 1 ∧ y = y ), and >0y is
motivated by the second.

?

1.8 Proving well-foundeness by induction

Lemma 1 Let be a binary relation R and Q be binary relatinos such
that R, Q ⊆ S × S. If R ⊆ Q and Q; R ⊆ Q then R+ ⊆ Q.



14 Foundations

Example 9 Consider the relation from Example 8.

R , ( x > 0 ∧ y > 0 ∧ x = x − 1 ∧ y = y )
∨ ( x > 0 ∧ y > 0 ∧ x = x ∧ y = y − 1)

The previous suggestion was to use the argument of well-foundeness
R+ ⊆ >0x ∪ >0y, but we gave no procedure for showing the inclusion
with R+. In order to use a decision procedure we can use the following
inductive argument:

Q , (>0x ∩ ≥y) ∪ (>0y ∩ ≥x)

Note that Q is disjuctively well-founded, as >0x and >0y are both well-
founded, and any subset of a well-founded relation is well-founded. We
can then use a decision procedure to prove that [[[R]]] ⊆ [[[Q]]] and [[[Q;R]]] ⊆
[[[Q]]] (by showing that R ⇒ Q and ∃V ′. Q[V/V ′] ∧ R[ V /V ′] ⇒ Q),
thus (by Lemma 1) proving that [[[R]]]+ ⊆ [[[Q]]]. As Q represents a
disjunctively well-founded relation, by Theorem 2, we know that [[[R]]]
is well founded. ?

1.9 Disproving well-foundedness

Until now we have considered only proving relations well founded, but
not disproving—i.e. proving that a relation is not well-founded.

Definition 17 (Recurrence sets) Assume P = (I, R, S). Q ⊆ S is a
recurrence set of P if:

(i) Q ⊆ R

(ii) Q ∩ I 6= ∅
(iii) ∀x ∈ Q. ∃y. (x, y) ∈ R ∧ y ∈ Q

Theorem 3 The transition system P is non-terminating iff there exists
a valid recurrence set Q for P

Example 10 Consider the relation over S:

R , x > 0 ∧ (x = x − 1 ∨ x = x)

Let I , S. The relation R I is not well founded. To prove it not
well founded (as opposed to simply failing to prove it well founded) we
define Q = {s | s(x) = 1 ∧ s ∈ S}. R = {s | s(x) > 0 ∧ s ∈ S}, thus
Q ⊆ R . Because Q ⊆ I and Q 6= ∅, Q∩ I 6= ∅. Finally, R(Q) = Q, thus
∀x ∈ Q.∃y.(x, y) ∈ R ∧ y ∈ Q.



1.10 Finite decomposition 15

?

1.10 Finite decomposition

Theorem 4 Assume that v ∈ Var and that the set L is finite, where

L = {s(v) | s ∈ R∗(I)}

R I is well founded if for all k ∈ L, (R +
I ) v=k is well founded.

Proof By contradiction and the pigeon-hole principle. Assume that s =
s1, s2, s3, . . . is an infinite sequence such that (s1, s2) ∈ R I , (s2, s3) ∈
R I , etc. Because L is finite and R∗(I)(v) = L, we know that there exists
a c ∈ L such that si(v) = c infinitely-often in s. Let s′ be the infinite
sequence of these states. We know that s′ is in the sequences allowed by
R +

I ∩ {(s, t) | s(v) = t(v) = c} (i.e. (R +
I ) v=c). But (R +

I ) v=c is well
founded.

Example 11 Consider the relation

R , ((b = 1 ∧ b = 0) ∨ (b = 0 ∧ b = 1))
∧ ( b = 1 ∧ x = x − 1 ∧ x > 0) ∨ ( b = 0 ∧ x = x)

In this case we could invent a fairly complex ranking function involving
both x and b, or alternatively we can simply prove R+

b=0 ⊆ >0x and
R+

b=1 ⊆ >0x. Note that we can do slightly better—the following
lemmas will allow us to eliminate one of these conjuncts. ?

Lemma 2 Assume that v ∈ Var and that the set L = R∗(I)(v) is finite.
Let k1 and k2 be constants from Val. Assume that, if (s, t) ∈ R and
t(v) = k2 then s(v) = k1. (R +

I ) v=l is well founded for each l ∈ L iff
(R +

I ) v=l is well founded for each l ∈ L− {k2}.

Proof By contradiction. Assume that there is an infinite sequence s =
s1, s2, s3, . . . allowed by R such that si(v) = k2 infinitely often. By
assumption, if si+1(v) = k2 then si(v) = k1. Thus si(v) = k1 occurs
infinitely often in s. But, by assumption, (R +

I ) v=k1 is well founded,
meaning that s cannot be infinite and thus contradicting the starting
assumption.



16 Foundations

s ∈ CmdSeqs ::= finite sequence of c

c ∈ Cmds ::= v := t | v := nondet | assume(f)

f ∈ Formulae ::= t1 < t2 | t1 > t2 | t1 ≥ t2 | t1 ≤ t2
| ¬f | f1 ∧ f2 | f1 ∨ f2 | f1 ⇒ f2 | true | false

t ∈ Terms ::= k | v | −t | t1 + t2 | t1 − t2 | t1 × t2 | . . .

k ∈ R

v ∈ Var

Fig. 1.1. Terms, formulae, and program commands expressed in Backus-Naur
form.

Lemma 3 Assume that v ∈ Var and that the set L = R∗(I)(v) is finite.
Let k1 and k2 be constants from Val. Assume that, if (s, t) ∈ R and
s(v) = k2 then t(v) = k1. (R +

I ) v=l is well founded for each l ∈ L iff
(R +

I v=l is well founded for each l ∈ L− {k2}.

Proof By the same argument as Lemma 2

Lemmas 2 and 3 allow us to remove one of the checks from Example 11.
We can now simply prove R well founded by proving R+

b=0 ⊆ >0x

1.11 Proving termination of programs

Until now we have considered methods of proving mathematical relations
well founded. We now focus our attention on programs. In this section
we describe a simple imperative programming language and discuss the
semantic meaning that maps programs to the transition relations that
they represent. We also provide some preliminary results which allow
us to prove termination of programs.

Definition 18 (Terms, formulae, commands) Figure 1.1 gives the
syntax for terms, formulae and commands. The semantics of formulae



1.11 Proving termination of programs 17

is standard. Commands represent relations, as defined below:

[[[x:=t]]] , {(s, s′) | ∀v ∈ V − {x}. s(v) = s′(v) ∧ s′(x) = t[s]}
[[[x:=nondet]]] , {(s, s′) | ∀v ∈ V − {x}. s(v) = s′(v)}
[[[assume(f)]]] , {(s, s′) | ∀v ∈ V. s(v) = s′(v) ∧ s ∈ [[f ]]}

The meaning of a finite sequence of commands is the relational compo-
sition of the meaning of each command in the sequence.

Definition 19 (VarsOf) We define VarsOf(P ) to be variables from
Vars referenced in the commands of P .

Definition 20 (Programs) A program P is structurally represented
as a rooted edge-labeled directed graph (L, E) where the nodes L rep-
resent set of locations and E represents the possible transitions between
locations:

E ⊆ L × CmdSeqs× L

We assume that the root is the location `root. The meaning of a program
is a transition system, (I,R) = [[P]], where ∃p 6∈ VarsOf(P) such that

R , {(s, s′′) | ∃s′, cs. (s, s′) ∈ [[cs]]
∧ s′′ = s′[p 7→ `′]
∧ s(p) ∈ L ∧ s′′(p) ∈ L
∧ (s(p), cs, s′′(p)) ∈ E .

}

I , {s | s(p) = `root}

Example 12 Consider the following program text:

while x > 0 do
x := x− 1;

od

In our internal representation we might represent this program using the
following graph,: L = {1, 2}, and

E = {(1, 〈assume(x > 0); x:=x− 1〉, 1), (1, 〈assume(¬(x > 0))〉, 2)



18 Foundations

In this case R equals the relation relation:

{(s, s′) | (s(pc) = 1 ∧ s′(pc) = 1 ∧ s(x) > 0 ∧ s′(x) = s(x)− 1
∧ ∀v ∈ Vars− {pc, x}. s(v) = s′(v))

∨ (s(pc) = 1 ∧ s′(pc) = 2 ∧ s(x) ≤ 0
∧ ∀v ∈ Vars− {pc}. s(v) = s′(v))

}
The transition system’s set of initial states, I, can be defined as the set
I = {s | s(pc) = 1}. Note that we can use a decision procedure to prove
that R ⊆ >0x−pc. Note that in this case we are lucky, as the value of pc

only goes up or stays the same.
?

Definition 21 (P-trace,P-path) The (possibly finite) sequence s is a
P-trace if s0 ∈ I and for all s indices i, (si−1, si) ∈ R. Let π(s) , s(pc).
The function π, when applied to a sequence, returns a sequence in which
π has been applied pointwise. A sequence p is a P-path if there exists
a P-trace s such that p = π(s). Let Paths(P) be the set of all P-
paths, Let Traces(P) be the set of all P-traces. We define a P-trace
segment to be a finite sequence s such that s0 ∈ R∗(I) and s indices i,
(si−1, si) ∈ R. Let TraceSegs(P) be the set of all P-trace segments.

Definition 22 (Cutpoints) C ⊆fin N is a valid cutpoint-coveringof P
if for any infinite P-path s, there exists a c ∈ C such that si(pc) = c

for an infinite subset of s indices. Let Cutpoints be some procedure
that returns a valid set of cutpoints when passed a program, and let
C , Cutpoints(P).

Observation 6 Assume that v is the variable used to track program
locations in the transition relation. P terminates if ∀n ∈ C. (R I) v=n

is well founded

Proof By induction with Lemmas 2 and 3 on the bounded number of
program locations not in C.

Note that, each obligation resulting from Observation 6 is, in essence,
proving that the location ` cannot be visited infinitely-often during the
program’s execution. Thus, since no location can be proved infinitely-
often, we know that the program terminates. When (in later chapters)
we consider programs with nested loops, we will make improvements to



1.12 Further reading 19

Observation 6 that allow us to ignore infinite executions through nested
loops that also pass infinitely-often through an outer-loop.

1.12 Further reading

The reader interested in examining the original papers from which this
chapter is drawn should begin with the proof of termination’s undecid-
ability [20, 19], and the seminal papers on proving program correctness
(e.g. Turing’s paper on proving programs correct [21], Floyd’s paper
on program semantics [10], Manna & Pnueli’s books [14, 13]). Readers
interested in well-ordered sets, well-founded relations, and the ordinals
should refer to a text like [3]. Readers interested in disjunctive termi-
nation proofs (i.e. Theorem 2 and Lemma 1) should read Podelski &
Rybalchenko’s paper [16] together with Ramsey’s original paper [17].

1.13 Exercises

(i) Assume that the variables in the following relations range over
the integers. Which of the following relations are well founded?
Which are not? Prove your answer by either finding (and proving
the validity) of a ranking relation, or finding (and proving the
validity) of a recurrence set. You are welcome to use an automatic
decision procedure to discharge the obligations.

(a) 1 < 0
(b) 0 < 1
(c) x > x ∧ x < 1000
(d) x > x ∧ x > 1000
(e) x ≥ x + 1 ∧ x < 1000
(f) x ≥ x − 1 ∧ x < 1000
(g) y ≥ y + 1 ∧ z = z ∧ z < 1000
(h) y + 1 ≥ y ∧ z = z ∧ z < 1000
(i) (x = x − 1 ∨ x = x + 1) ∧ x < 1000
(j) x = x − z ∧ x > 0
(k) x = x − z ∧ x > 0
(l) x = x − 1 ∧ ( x > 0 ∨ x < 200)

(m) x > 0∧ y > 0∧[(x = x−1∧ y = y )∨( y = y−1∧x = x)]
(n) x > 0∧ y > 0∧ [(x = x−1∧y = y )∧(y = y−1∧x = x)]
(o) x > 0∧ y > 0∧[(x = x−1∧y = y+1)∨(y = y−1∧x = x)]



20 Foundations

(p) x > 0∧ y > 0∧ [(x = x−1∧y = y +1)∨ (y = y −1∧x =
x + 1)]

(q) ( x > 0 ∨ y > 0) ∧ x = x − 1 ∧ y = y − 1
(r) x > 0 ∧ x = x − y ∧ y = y + 1

(ii) Reconsider the relations above in the case where the variables
range over the real numbers? Which of the following relations
are well founded? Which are not? Again, prove your answers.

(iii) Prove or disprove the following assertions:

(a) If R2 is well founded, R is well founded.
(b) If R is well founded, R2 is well founded.
(c) If R is well founded, R+ is well founded.
(d) If R+ is well founded, R is well founded.
(e) If R is well founded, R ∩Q is well founded.
(f) If R is well founded, R ∪Q is well founded.
(g) If R is well founded, R−1 is well founded.

(iv) Is the following relation well founded?

x > 0∧ y > 0∧ [(x = x + 1∧ y = y − 1)∨ (x = x − 1∧ y = y )]

If so: Use Theorem 2 and Lemma 1 to prove the following relation
well founded If not, find and prove the validity of a recurrence
set.

(v) Translate the following program into the representation intro-
duced in Section 1.11:

while x > 0 do
x := x− 1;
y := x;
while y > 0 do

y := y − 1;
od

od
exit;

What is this program’s semantic meaning (in the form of a rela-
tion)? Give a valid set of cutpoints for this program. Find and
prove the validity of a ranking function that proves the relation
well founded.



1.13 Exercises 21

(vi) Use the techniques from Section 1.10 to prove the following rela-
tion well founded:

R , x = 0 ⇒ (x = 1 ∧ y > 0 ∧ y = y )
∧ x = 1 ⇒ (x = 2 ∧ y = y )
∧ x = 2 ⇒ (x = 3 ∧ y = y − 1)
∧ x = 3 ⇒ (x = 0 ∧ y = y )
∧ ( x = 3 ∨ x = 2 ∨ x = 1 ∨ x = 1 ∨ x = 0)



Bibliography

J. Berdine, A. Chawdhary, B. Cook, D. Distefano, and P. O’Hearn. Variance
analyses from invariance analyses. In POPL’07: Programming Language
Design and Implementation, 2007.

J. Berdine, B. Cook, D. Distefano, and P. O’Hearn. Automatic termination
proofs for programs with shape-shifting heaps. In CAV’06: Computer
Aided Verification, 2006.

G. Cantor. Contributions to the Founding of the Theory of Transfinite Num-
bers. Dover, 1955.

A. Chawdhary, B. Cook, S. Gulwani, M. Sagiv, and H. Yang. Ranking ab-
stractions. In ESOP’08: European Symposium on Programming, 2008.

B. Cook. The foundations of program termination. In Lecture Notes of the
Marktoberdorf 2008 Summer School (to appear), 2008.

B. Cook, A. Gotsman, A. Podelski, A. Rybalchenko, and M. Vardi. Proving
that programs eventually do something good. In POPL’07: Programming
Language Design and Implementation, 2007.

B. Cook, S. Gulwani, T. Lev-Ami, A. Rybalchenko, and M. Sagiv. Proving
conditional termination. In CAV’08: Computer Aided Verification, 2008.

B. Cook, A. Podelski, and A. Rybalchenko. Termination proofs for systems
code. In PLDI’06: Programming Language Design and Implementation,
2006.

B. Cook, A. Podelski, and A. Rybalchenko. Proving thread termination. In
PLDI’07: Programming Language Design and Implementation, 2007.

R. Floyd. Assigning meanings to programs. In J. T. Schwartz, editor, Math-
ematical Aspects of Computer Science, volume 19 of Proceedings of Sym-
posia in Applied Mathematics, pages 19–32. American Mathematical So-
ciety, 1967.

A. Gupta, T. Henzinger, R. Majumdar, A. Rybalchenko, and R. Xu. Proving
non-termination. In POPL’08: Principles of Programming Languages,
2008.

S. Magill, J. Berdine, E. Clarke, and B. Cook. Arithmetic strengthening for
shape analysis. In SAS’07: Static Analysis Symposium, 2007.

Z. Manna and A. Pnueli. Temporal verification of reactive systems: Progress.
Springer, 1995.

Z. Manna and A. Pnueli. Temporal verification of reactive systems: Safety.
Springer, 1995.

A. Podelski and A. Rybalchenko. A complete method for the synthesis of

22



Bibliography 23

linear ranking functions. In VMCAI’04: Verification, Model Checking,
and Abstract Interpretation, pages 239–251, 2004.

A. Podelski and A. Rybalchenko. Transition invariants. In LICS’04: Logic in
Computer Science, pages 32–41. IEEE, 2004.

F. Ramsey. On a problem of formal logic. London Math. Soc., 30:264–286,
1930.

G. Stix. Send in the Terminator. Scientific American Magazine, November
2006.

C. Strachey. An impossible program. Computer Journal, 7(4):313, 1965.
A. Turing. On computable numbers, with an application to the Entschei-

dungsproblem. London Mathematical Society, 42(2):230–265, 1936.
A. Turing. Checking a large routine. In Report of a Conference on High Speed

Automatic Calculating machines, pages 67–69, 1949.


