
Proving program termination

In contrast to popular belief, proving termination is not always impossible

Byron Cook

ABSTRACT
After Turing proved the halting problem undecidable in 1936,
the dream of automatic termination proving has been con-
sidered by many to be impossible. While not refuting Tur-
ing’s original result, recent research advances now make prac-
tical termination proving tools a reality.

Introduction
The program termination problem, also known as the uni-
form halting problem, can be defined as follows:

Using only a finite amount of time, determine
whether a given program will always finish run-
ning or could potentially execute forever.

This problem rose to prominence before the invention of the
modern computer, in the era of Hilbert’s Entscheidungsprob-
lem1: the challenge to formalize all of mathematics and
use computational means to determine the validity of all
statements. In hopes of either solving or showing Hilbert’s
challenge impossible, logicians began to search for possible
instances of undecidable problems, Turing’s proof [46]2 of
the termination’s undecidability is the most famous of those
findings.

The termination problem is structured as an infinite set
of queries: to solve the problem we would need to invent
a method capabable of accurately answering either “termi-
nates”or“doesn’t terminate”when given any program drawn
from this set. Turing’s result tells us that any tool that at-
tempts to solve this problem will fail to return a correct
answer on at least one of the inputs. No number of extra
processors nor terabytes of storage nor new sophisticated
algorithms will lead to the development of a true oracle for
program termination.

Unfortunately, many have drawn too strong of a conclu-
sion about the prospects of automatic program termination
proving and falsely believe that that we are always unable
to prove termination, rather than more benign consequence
that we are unable to always prove termination. Phrases like
“but that’s like the halting problem” or “but that’s undecid-
able” are often used to end discussions that could otherwise
have led to viable partial solutions for real but technically
undecidable problems.
1In English: “decision problem”
2There is a minor controversy as to whether or not Turing
proved the undecidability in [46]. Technically he did not,
but termination’s undecidability is an easy consequence of
the result that is proved. A simple proof can be found in
[44].

While we of course cannot ignore termination’s undecid-
ability, if we develop a slightly modified problem statement
we can build useful tools. In our new problem statement
we will still require that a termination proving tool always
return answers that are correct, but we will not necissarily
require an answer. If the termination prover cannot prove
or disprove termination, it should return “unknown”.

Using only a finite amount of time, determine
whether a given program will always finish run-
ning or could potentially execute forever, or re-
turn the answer “unknown”.

This problem can clearly be solved, as we could simply al-
ways return “unknown”. The challenge is to solve this prob-
lem while keeping the occurrences of the answer “unknown”
to within a tolerable threshold, in the same way that we
hope web browsers will usually succeed to download web-
pages, although we know that they will sometimes fail.

In recent years, powerful new termination tools have emerged
that return “unknown” infrequently enough that they are
useful in practice [43]. These termination tools can automat-
ically prove or disprove termination of many famous com-
plex examples such as Ackermann’s function or McCarthy’s
91 function as well as moderately-sized industrial examples
drawn from the Windows operating system or NASA’s Mars
rover. Furthermore, entire families of industrially useful
termination-like properties—called liveness properties [1]—
such as “Every call to lock is eventually followed by a call
to unlock” are now automatically provable using termination
proving techniques [17]. With every month, we now see more
powerful applications of automatic termination proving. As
an example, recent work has demonstrated the utility of
automatic termination proving to the problem of showing
concurrent algorithms to be non-blocking [29]. With further
research and development, we will see more powerful and
more scalable tools.

We could also witness a shift in the power of software,
as techniques from termination proving could lead to tools
for other undecidable problems. Problems such as Wang’s
tiling problem or Diophantine equation solving are reducible
to termination—in fact their proofs of undecidability are via
reductions to termination. Thus, advances in termination
proving could be potentially adapted for other applications.
Whereas in the past a software developer hoping to build
practical tools for solving something related to termination
might have been frightened off by a colleague’s retort “but
that’s like the halting problem”, perhaps in the future the
developer will instead adapt techniques from within modern
termination provers in order to develop a partial solution to

1 x := input();
2 y := input();
3 while x > 0 and y > 0 do
4 if input() = 1 then
5 x := x− 1;
6 y := y + 1;
7 else
8 y := y − 1;
9 fi
10 done

Figure 1: Example program. User-supplied inputs
are gathered via calls to the function input(). We
assume that the variables range over integers with
arbitrary precision (in other words, not 64-bit or 32-
bit integers). Assuming that the user always even-
tually enters in a value when prompted via input(),
does the terminate for all possible user-supplied in-
puts? (Answer provided in a footnote below)

the problem of interest.
The purpose of this article is to familiarize the reader

with the recent advances in termination proving, and cata-
log the underlying techniques for those interested in adapt-
ing known termination proving techniques to other related
domains. We also discuss current work and possible av-
enues for future investigation. Concepts and strategies will
be introduced informally, with citations to original papers
for those interested in more detail. Several optional sidebars
are made available for readers with backgrounds in mathe-
matical logic.

Modular termination arguments
Thirteen years after publishing his original undecidability
result, Turing proposed the now classic method of proving
program termination [47]. His solution divides the problem
into two parts:

Termination argument search: Find a termination ar-
gument in the form of a function that maps every
program state to a value in a mathematical structure
called a well-order [14]. We will not define well-orders
here, the reader can assume for now that we are using
the natural numbers (a.k.a. the positive integers).

Validity checking: prove the termination argument to be
valid for the program under consideration by proving
that result of the function decreases for every possible
program transition. That is, if f is the termination
argument and the program can transition from some
configuration s to t, then f(s) > f(t).

The reader with a background in logic may be interested in
the formal explaination contained in the sidebar.

A well-order can be thought of as a terminating program—
in the example of the natural numbers, the program is one
that enumerates from some initial value in the natural num-
bers down to 0. Thus, no matter which initial value is chosen
the program will still terminate. Given this connection be-
tween well-orders and terminating programs, in essense Tur-
ing is proposing that we search for a map from the program
we are interested in proving termination of into a program

known to terminate such that all steps in one program have
analogous steps in the other program. This map to a well-
order is usually called a measure or a ranking function in the
literature. After the publication of [47], for the next 40 years
all known methods of proving termination were in essence
minor variations on the same original technique.

The problem with Turing’s method is that finding a sin-
gle, or monolithic, ranking function for the whole program is
typically difficult, even for simple programs. Once a suitable
ranking function has been found, checking validity (while it-
self undecidable in the presence of nested loops and complex
program invariants) is in practice is fairly easy.

The key trend in termination proving that has led towards
progress has been the move away from the search for mono-
lithic ranking functions and towards a search for modular
termination arguments, as spearheaded in [23, 26, 34, 37,
40]. The soundness of the approaches proposed in these pa-
pers is usually established via an application of Koening’s
lemma [33] or Ramsey’s theorem [42]. This change in strat-
egy has opened up numerous new algorithmic approaches
for proving termination. Examples can be found in [4, 5, 11,
15, 17, 19, 34, 38].

The advantage to a modular style of termination argu-
ment is that they can be expressed in small and easy-to-
understand pieces and they are usually easier to find, as
each piece of the argument can be found in parallel or in-
crementally using various known methods. Unfortunately,
when using modular termination arguments, a more diffi-
cult validity condition must be checked. This difficulty can
be mitigated thanks to recent advances in assert proving
tools (as discussed in a later section).

Example using a single monolithic termination argument.
Consider the example code fragment in Figure 1. In this
code the collection of user-provided input is performed via
the function input(). We will assume that the user always
enters in a new value when prompted. Furthermore, we will
assume for now that variables range over possibly-negative
integers with arbitrary precision (that is, mathematical inte-
gers as opposed to 32-bit words, 64-bit words, etc.). Before
reading further, please answer the question: “Does this pro-
gram terminate, no matter what values the user gives via
the input() function?”. The answer is given below3.

Using Turing’s traditional method we can define a rank-
ing function from program variables to the natural numbers.
One ranking function that will work is 2x + y, though there
are many others. Here we are using the formula 2x + y as
shorthand for a function that takes a program configuation
as its input and returns the natural number computed by
looking up the value of x in the memory, multiplying that by
2 and then adding in y’s value—thus 2x + y is representing
a proper mapping from program configurations to natural
numbers. This ranking function meets the constraints re-
quired to prove termination: the valuation of 2x + y when
executing at line 9 in the program will be strictly one less
than its valuation during the same loop iteration at line
4. Furthermore, we know that the function always produces
natural numbers (thus it is a map into a well-order), as 2x+y
is greater than 0 at lines 4 through 9.

Automatically proving the validity of a monolithic termi-
nation argument like 2x + y is usually quite easy using tools

3 Theprogramdoesterminate.

Note for the reader with a background in logic

Formally, proving program termination amounts to
proving the program’s transition relation R to be well-
founded. If (S,≥) is a well-order, then we know that
> is a well-founded relation. Furthermore, we know
that any map f into S gives rise to a well-founded rela-
tion, by lifting > via f : {(s, t) | f(s) > f(t)}. Turing’s
method [47] of proving a program’s transition relation R
well-founded is to find a map, f , into a well-order defin-
ing a termination argument T = {(s, t) | f(s) > f(t)}.
To prove the validity of T we must show R ⊆ T . We
know that T is well-founded, and as every sub-relation
of a well-founded relation is itself well-founded, we then
know that R is well-founded.

In this article we are using the phrase modular termi-
nation argument to refer to a finite disjunction of well-
founded relations T1∪T2∪. . .∪Tn, where usually each Ti

will be constructed as above via some map into a well-
order. To prove the validity of this style of argument we
must show that

R+ ⊆ T1 ∪ T2 ∪ . . . ∪ Tn

Note that the non-reflexive transitive closure (the + in
R+) is important: it is not suffecient to show that R ⊆
T1 ∪T2 ∪ . . .∪Tn, as the union of well-founded relations
is not guarenteed to be well-founded. It is the transitive
closure that makes checking the subset inclusion more
difficult in practice. The proof of the soundness of above
approach is based on Ramsey’s theorem [42]. Numerous
papers have reported on results similar to the above [23,
26, 34, 40].

1 x := input();
2 y := input();
3 while x > 0 and y > 0 do
4 if input() = 1 then
5 x := x− 1;
6 y := input();
7 else
8 y := y − 1;
9 fi
10 done

Figure 2: Example program, similar to Figure 1
where the command “y := y + 1;” replaced with
“y := input();”. No ranking function into the natu-
ral numbers exists that can prove the termination
of this program.

such as Slam [3], Blast [31], or Impact [36]. However, as
mentioned above, the actual search for a valid argument is
famously tricky. As an example, consider the case in Fig-
ure 2, where we have replaced the command “y := y + 1;” in
Figure 1 with “y := input();”. In this case no function into
the natural numbers exists that suffices to prove termina-
tion; instead we must resort to a lexiographic ranking func-
tion (a ranking function into a more advanced well-order).

Example using a modular termination argument. Follow-
ing the trend towards the use of modular termination argu-
ments, we could also prove the termination of Figure 1 by
defining an argument as the unordered finite collection of
measures x and y. The termination argument in this case
should be read as

x goes down by at least 1 and is larger than 0

or

y goes down by at least 1 and is larger than 0

The use of “or” is key: the termination argument is modular
because it is easy to enlarge using additional measures via
additional uses of “or”. As an example, we could enlarge the
termination argument by adding “or 2w−y goes down by at
least 1 and is greater than 1000”. Furthermore, as we will
see in a later section, independently finding these pieces of
the termination argument is easier in practice than finding
a single monolithic ranking function.

The advanced reader will notice the relationship between
our modular termination argument and complex lexiographic
ranking functions. The advantage here is that we do not
need to find an order on the pieces of the argument, thus
making the pieces of the argument independant from one
another.

The difficulty with modular termination arguments in com-
parison to monolithic ones is that they are more difficult to
prove valid: for the benefit of modularity we pay the price
in the fact that the termination arguments must consider all
possible loop unrollings and not just single passes through
a loop. That is to say: the modular termination argument
must hold not only between the states before and after any
single iteration of the loop, but before and after any number
of iterations of the loop (1 iteration, 2 iterations, 3 iterations,

1 x := input();
2 y := input();
3 while x > 0 and y > 0 do
4 if input() = 1 then
5 x := x− 1;
6 y := y + 1;
7 else
8 x := x + 1;
9 y := y − 1;
10 fi
11 done

Figure 3: Another example program. Does it ter-
minate for all possible user-supplied inputs?

1 if y ≥ 1 then
2 while x > 0 do
3 assert(y ≥ 1);
4 y := y + 1;
5 x := x− y;
6 done
7 fi

Figure 4: Example program with assert statement.

etc). This is a much more difficult condition to automati-
cally prove. In the case of Figure 1 we can prove the more
complex condition using tricks described later.

Note that this same termination argument now works for
the tricky program in Figure 2, where we replaced “y :=
y + 1;” with “y := input();”. On every possible unrolling of
the loop we will still see that either x or y has gone down
and is larger than 0.

To see why we cannot use the same validity check for mod-
ular termination arguments as we do for monolithic ones,
consider the slightly modified example in Figure 3. For ev-
ery single iteration of the loop it is true that either x goes
down by at least one and x is greater than 0 or y goes down
by at least one and y is greater than 0. Yet, the program does
not guarantee termination. As an example input sequence
that triggers non-termination, consider 5, 5, followed by 1,
0, 1, 0, 1, 0, If we consider all possible unrollings of
the loop, however, we will see that after two iterations it is
possible (in the case that the user supplied the inputs 1 and
0 during the two loop iterations) that neither x nor y went
down, and thus the modular termination argument is not
valid for the program in Figure 3.

Argument validity checking
While validity checking for modular arguments is more dif-
ficult than checking for monolithic arguments, we can adapt
the problem such that recently developed tools for proving
the validity of assert statements in programs such as Im-
pact [36] can be applied4.

An assert statement can be used in a program to check
that a condition is true. For example, assert(y ≥ 1) would
ensure that y ≥ 1 after executing the command. In practice,

4We are using the term assert statement checking syn-
onymously with safety checking, safety proving, invariance
checking , invariance proving, etc.

1 copied := 0;
2 x := input();
3 y := input();
4 while x > 0 and y > 0 do
5 if copied = 1 then
6 assert(oldx ≥ x + 1 and oldx > 0);
7 elsif input() = 1 then
8 copied := 1;
9 oldx := x;
10 oldy := y;
11 fi
12 if input() = 1 then
13 x := x− 1;
14 y := y + 1;
15 else
16 y := y − 1;
17 fi
18 done

Figure 5: Encoding of termination argument validity
using the program from Figure 1 and the termina-
tion argument “x goes down by at least one and is
larger than 0”. The black code comes directly from
Figure 1. The code in red implements the encoding
of validity with an assert statement.

programs will raise exceptions when conditions fail, but we
can use an assert verifier to formally prove at compile time
that the conditions passed to assert statements always eval-
uate to true. Most assert verifiers will, for example, be able
to prove that the assert statement at line 3 in Figure 4 will
never fail. Note that assert verification is itself an undecid-
able problem, although it is technically in an easier class of
difficulty than termination5.

The reason that assert-checking is so important to termi-
nation is that the validity of modular termination arguments
can be encoded as an assert statement, where the statement
fails only in the case that the termination argument is not
valid. Once we are given an argument of the form T1 or T2

or . . . or Tn, to check validity we simply want to prove the
following statement

There does not exist a state such that another
state is reachable via a finite unrolling of the loop
such that T1 doesn’t hold between the pre-state
and post-state, nor does T2 hold between the pre-
state and post-state, etc.

That is, we introduce new variables into the program to re-
member a previous state before the unrolling of the loop and
then use an assert to check that the termination argument
always holds between the current state and the remembered
state, if the assert prover can prove that the assert cannot
fail, it has proved the validity of the termination argument.
We can use encoding tricks such that the assert verifier must
consider all possible unrollings.

To see such an example, look at Figure 5, where we have
used the termination argument “x goes down by at least one
and x is greater than 0”using the encoding given in [19]. The
new code (introduced as a part of the encoding) is given in

5Assert verification for infinite-state systems is undecidable
but co-NP, whereas termination is not co-NP.

red, whereas the original program from Figure 1 is in black.
We make use of an extra call to input() to decide when the
unrolling begins. The new variables oldx and oldy are used
to record the pre-state. Note that the assert checker must
consider all values possibly returned by input() during its
proof, thus the proof of termination is valid for any starting
position. This has the effect of considering any possible
unrolling of the loop. After the pre-state state has been
recorded, from this point out the termination argument is
checked using the pre-state and post-state. In this case the
assert can fail, meaning that the termination argument is
invalid.

If we were to attempt to check this condition in a naive
way (for example, by simply executing the program) we
would never find a proof for all but the most trivial of cases.
Thus, assert verifiers must cleverly designed to find proofs
about all possible executions without actually executing all
of the paths. A plethora of recently developed techniques
now make this possible. Many recent assert verifiers are de-
signed to produce a path to a bug in the case that the assert
statement cannot be proved. For example, a path to the
assert failure found by the assert prover Impact [36] is 1→
2 → 3 → 4 → 5 → 7 → 8 → 9 → 10 → 11 → 12 → 16 →
17→ 4→ 5→ 6. This path can be broken into parts, each
representing a different phases of the execution: the prefix-
path 1→ 2→ 3→ 4 is the path from the program’s initial
state to the first of the two failing states. The second part
of the path 4 → 5 → . . . 5 → 6 represents how we reached
the second failing state from the first. That is: this is the
unrolling found that demonstrates that the assert statement
can fail. What we know is that the termination argument
does not currently cover the case where this path is repeated
forever.

See Figure 6 for a version using the same encoding, but
with the valid termination argument

x goes down by at least 1 and is larger than 0

or

y goes down by at least 1 and is larger than 0

This assert cannot fail. The fact that it cannot fail can
be proved by a number of assert verification tools, including
Impact.

Finding termination arguments
In the previous section we saw how we can check a termi-
nation argument’s validity via a translation to a program
with an assert. We now discuss known methods for finding
termination arguments.

Monolithic rank function synthesis. In some cases simple
monolithic ranking functions for example programs can be
automatically found. For example, if we consider unnested
loops with conditional checks and assignment statements
using only linear arithmetic over the real numbers or ra-
tionals, the search for ranking functions expressed in linear
arithmetic is decidable [39]. The most popular approach
for finding this class of ranking function uses a result from
Farkas [25] together with tools for solving linear constraint
systems (such as Z3 [22] or Yices [24]). See [16] or [39] for
examples of tools using Farkas’ lemma. Approaches for find-
ing more complex classes of ranking functions for restricted

1 copied := 0;
2 x := input();
3 y := input();
4 while x > 0 and y > 0 do
5 if copied = 1 then
6 assert((oldx ≥ x + 1 and oldx > 0)
7 or
8 (oldy ≥ y + 1 and oldy > 0)
9);
10 elsif input() = 1 then
11 copied := 1;
12 oldx := x;
13 oldy := y;
14 fi
15 if input() = 1 then
16 x := x− 1;
17 y := y + 1;
18 else
19 y := y − 1;
20 fi
21 done

Figure 6: Encoding of termination argument validity
using the program from Figure 1 and the termina-
tion argument “x goes down by at least one and is
larger than 0 or y goes down by at least one and is
larger than 0”. The black code comes directly from
Figure 1. The code in red implements the encoding
of validity with an assert statement.

systems have also been proposed—see [2, 8, 9, 10, 12, 11,
8, 13, 28, 45]. These tools are sometimes applied directly
to programs, but more frequently they are used internally
within termination proving tools on representations of parts
of the software during the search for modular termination
arguments.

Termination analysis. Numerous approaches have been de-
veloped for finding modular termination arguments in which—
in effect—the validity condition for modular termination ar-
guments is almost guaranteed to hold by construction. In
some cases—[4] for example—to prove termination we need
only check that the argument indeed represents a set of mea-
sures. In other cases, such as [34] or [38], the tool makes a
one-time guess as to the termination argument and then
checks it using techniques drawn from abstract interpreta-
tion [21].

Consider the modified program in Figure 7. The termi-
nation strategy described in [4] essentially builds a program
like this and then applies a custom program analysis to find
the following candidate termination argument:

(copied 6= 1) or

(oldx ≥ x + 1 and oldx > 0 and oldy > 0 and x ≥ 0 and y > 0) or

(oldx ≥ x and oldy ≥ y + 1 and oldx > 0 and oldy > 0 and x > 0 and y ≥ 0) or

for the program at line 4—meaning that we could pass this
complex expression to assert at line 4 in Figure 7 and know
that the assert cannot fail. We know that this statement
is true of any unrolling of the loop in the original Figure 1.
What remains is to prove that each piece of the candidate
argument represents a measure that decreases—here we can
use rank function synthesis tools to prove that oldx ≥ x +

1 copied := 0;
2 x := input();
3 y := input();
4 while x > 0 and y > 0 do
5 if copied = 1 then
6 skip;
7 elsif input() = 1 then
8 copied := 1;
9 oldx := x;
10 oldy := y;
11 fi
12 if input() = 1 then
13 x := x− 1;
14 y := y + 1;
15 else
16 y := y − 1;
17 fi
18 done

Figure 7: Program prepared for abstract interpre-
tation

1 and oldx > 0 . . . represents the measure based on x. If
each piece between the ors in fact represents a measure (with
the exception of copied 6= 1 which comes from the encoding)
then we have proved termination.

One difficulty with this style of termination proving is
that, in the case that the program doesn’t terminate, the
tools can only report “unknown”, as the techniques used in-
side the abstract interpretation tools have lost so much de-
tail that it is impossible to find a non-terminating execution
from the failed proof and then prove it non-terminating. The
advantage when compared to other known techniques is that
it is much faster. Another advantage to these approaches is
that they will not diverge themselves, they are guarenteed
to either produce the answer “terminates” or “unknown”.

Finding arguments by refinement. Another method for dis-
covering a termination argument is to follow the approach
of [19] or [15] and search for counterexamples to (possibly
invalid) termination arguments and then refine them based
on new ranking functions found via the counterexamples.

Recall Figure 5, which encoded the invalid termination
argument for the program in Figure 1, and the path leading
to the failure of the assert: 1→ 2→ 3→ 4→ 5→ 7→ 8→
9 → 10 → 11 → 12 → 16 → 17 → 4 → 5 → 6. Recall that
this path represents two phases of the program’s execution:
the path to the loop, and some unrolling of the loop such
that the termination condition doesn’t hold. In this case
the path 4→ 5→ . . . 5→ 6 represents how we reached the
second failing state from the first. This is a counterexample
to the validity of the termination argument, meaning that
the current termination argument does not take this path
and others like it into account.

If the path can be repeated forever during the program’s
execution then we have found a real counterexample. Known
approaches ([30], for example) can be used to try and prove
that this path can be repeated forever. In this case, how-
ever, we know that the path cannot be repeated forever, as
y is decremented on each iteration through the path and
also constrained via a conditional statement to be positive.
Thus this path is a spurious counterexample to termination

and can be ruled out via a refinement to the termination ar-
gument. Again, using rank function synthesis tools we can
automatically find a ranking function that demonstrates the
spuriousness of this path. In this case a rank function syn-
thesis tool will find y, meaning that the reason that this path
cannot be repeated for ever is that “y always goes down by
at least one and is larger than 0”. We can then refine the
current termination argument used in Figure 5:

x goes down by at least 1 and is larger than 0

with the larger termination argument:

x goes down by at least 1 and is larger than 0

or

y goes down by at least 1 and is larger than 0

We can then check the validity of this termination argument
using a tool such as Impact on program in Figure 6. Im-
pact can prove that this assert never fails, thus proving the
termination of the program in Figure 1.

Further directions
With fresh advances in methods for proving the termination
of sequential programs that operate over mathematical num-
bers we are now in the position to begin proving termination
of more complex programs, such as those with dynamically
allocated data-structures, or multi-threading. Furthermore,
these new advances open up new the potential for proving
properties beyond termination, and finding conditions which
would guarantee termination. We now discuss these avenues
of future research and development in some detail.

Dynamically allocated heap. Consider the C loop in in Fig-
ure 8, which walks down a list and removes links with data
elements equaling 5. Does this loop guarantee termination?
What termination argument should we use?

The problem here is that there are no arithmetic vari-
ables in the program from which we can begin to construct
an argument—instead we would want to express the termi-
nation argument over the lengths of paths to NULL via the
next field. Furthermore, the programmer has obviously in-
tended for this loop to be used on acyclic singly-linked lists,
but how do we know that the lists pointed to by head will
always be acyclic? The common solution to these problems
is to use shape analysis tools (which are designed to auto-
matically discover the shapes of data-structures) and then to
create new auxiliary variables in the program that track the
sizes of those data structures, thus allowing for arithmetic
ranking functions to be more easily expressed—examples in-
clude [35, 7, 5]. The difficultly with this approach is that we
are now dependent on the accuracy and scalability of current
shape analysis tools—to date the best known shape analysis
tool [49] supports only lists and trees (cyclic and acyclic,
singly- and doubly-linked) and scales only to relatively sim-
ple programs of size less than 30,000 LOC. Furthermore,
the auxiliary variables introduced by methods such as [35]
sometimes do not track enough information in order to prove
termination (for example, imagine a case with lists of lists
in which the sizes of the nested lists are important). In or-
der to improve the state-of-the-art for termination proving
of programs using data structures, we must develop better

Note for the reader with a background in logic

In some precise detail, here a brief summary of the
known implementation strategies based on modular ter-
mination arguments:

Variance analysis [4]: As described in some detail
in this article, the approach from [4] uses pro-
gram transformations and abstract interpretion
for invariants to compute an over approximation
T1, T2, . . . Tn such that R+ ⊆ T1 ∪ T2 ∪ . . . ∪ Tn.
It then uses rank function synthesis to check that
each Ti is well founded.

Size-change [34]: This technique abstracts R, deter-
mining a computable overapproximation to R+.
It then guesses at a termination argument using
each variable in the program: T1 equals the set of
states ordered on variable x1, T2 equals the set of
states ordered on variable x2, etc. Each Ti is thus
well-founded by construction. The size-change ap-
proach has been implemented in numerous tools
and extended in various ways.

Induction [15]: The strategy here is to find an induc-
tive termination argument, T = T1 ∪ T2 ∪ . . . ∪ Tn

such that R ⊆ T and T ; R ⊆ T , thus proving
R+ ⊆ T . The advantage to this approach is we
do not need to implement assert-checking strate-
gies which support transitive closure. The disad-
vantage is that finding inductivly valid arguments
is more challenging than simply finding valid ar-
guments

Refinement [19]: In this approach the termination ar-
gument begins with ∅. We first attempt to prove
that R+ ⊆ ∅. When this proof fails, rank func-
tion synthesis is applied to the witness, thus giv-
ing a refinement T1 to the argument, which is then
rechecked R+ ⊆ ∅ ∪ T1. This process is repeated
until a valid argument is found or a real counterex-
ample is found. This method is not guarenteed to
return an answer, but answers can be verifiably
correct.

c = head;

while(c != NULL) {

if (c->next != NULL && c->next->data == 5) {

t = c->next;

c->next = c->next->next;

free(t);

}

c = c->next;

}

Figure 8: Example C loop over a linked-list data-
structure with fields next and data.

1 x := 10;
2 while x > 9 do
3 x := x− 232;
4 done

Figure 9: Example program demonstrating non-
termination when variables range over fixed-width
numbers. The program terminates if x ranges over
arbitrary size integers, but repeatedly visits the
state where x = 10 in the case that x ranges over
32-bit unsigned numbers.

while (x != NULL && y<1073741824) {

if (input() == 1) {

x = x->next;

} else {

y = y << 1;

}

}

Figure 10: Example program using both bit-vectors
and unbounded heap. Existing techniques for prov-
ing termination of programs with heap, and pro-
grams with bit-vectors do not mix well in current
frameworks.

methods of finding arguments over data structure shapes,
and we must also improve the accuracy and scalability of
existing shape analysis tools.

Bit vectors. In the examples used until now we have consid-
ered only variables that range over mathematical numbers.
The reality is that most programs use variables that range
over fixed-width numbers, such as 32-bit integers or 64-bit
floating-point numbers, with the possibility of overflow or
underflow. If a program uses only fixed-width numbers and
does not use dynamically allocated memory, then termina-
tion proving is decidable (though still not easy)6. In this
case we simply need to look for a repeated state, as the pro-
gram will diverge if and only if there exists some state that
is repeated during execution [6]. Furthermore, we cannot
ignore the fixed-width semantics, as overflow and underflow
can cause non-termination in programs that would otherwise
terminates, an example is is included in Figure 9. Another
complication when considering this style of program is that
of bit-level operations, such as left- or right-shift.

When programs mix fixed-width numbers with the heap
or unbounded numbers (perhaps introduced for reasoning
about the heap), more difficulties arise. Good techniques
that support such mixed programs are currently not known,
and should be developed in the future. Consider, for exam-
ple, the code in Figure 10, where x is used as a pointer into
the heap, but y ranges only over bit-vectors. In this case
we need to find a termination argument that fits into the
modular termination argument framework, but is accurate
for programs with fixed-width integers.

Binary executables. Until now we have discussed proving
termination of programs at their source level, perhaps in

6As a consequence of [20], we also know this result holds
even in the precense of recursive procedures.

C or Java. The difficulty with this strategy is that the
compilers that then take these source programs and con-
vert them into executable artifacts can introduce termina-
tion bugs that do not exist in the original source program.
Several potential strategies could help mitigate this prob-
lem: 1) we might try to prove termination of the executable
binaries instead of the source level programs, perhaps us-
ing recent advances in binary analysis; 2) we might try to
equip the compiler with the ability to prove that the result-
ing binary program preserves termination, perhaps by first
proving the termination of the source program and then find-
ing a map from the binary to the source-level program and
proving that the composition with the source-level termina-
tion argument forms a valid termination argument for the
binary-level program.

Non-linear systems. Current termination provers largely
ignore non-linear arithmetic. When non-linear updates to
variables do occur (for example x := y∗z;), current termina-
tion provers typically treat them as if they were the instruc-
tion x := input();. This modification is sound—meaning that
when the termination prover returns the answer “terminat-
ing”, we know that the proof is valid. Unfortunately, this
method is not precise: the treatment of these commands
can lead to the result “unknown” for programs that actually
terminate. Termination provers are also typically unable to
find or check non-linear termination arguments (x2, for ex-
ample) when they are required. Some preliminary efforts in
this direction have been made [2, 8], but these techniques are
weak. To improve the current power of termination provers,
further developments in non-linear reasoning are required.

Concurrency. Concurrency adds an extra layer of difficultly
when attempting to prove program termination. The prob-
lem here is that we must consider all possible interactions
between concurrently executing threads. This is especially
true for modern fine-grained concurrent algorithms, in which
threads interact in subtle ways through dynamically allo-
cated data structures. Rather than attempting to explicitly
consider all possible interleavings of the threads (which does
not scale to large programs) the usual method for proving
concurrent programs correct is based on rely-guarantee or
assume-guarantee reasoning, which considers every thread
in isolation under assumptions on its environment and thus
avoids reasoning about thread interactions directly. Much
of power of a rely-guarantee proof system such as [48] comes
from the cyclic proof rules, where we can assume a prop-
erty of the second thread while proving property of the first
thread, and then assume the recently proved property of
the first thread when proving the assumed property of the
second thread. This strategy works for assert-verification,
but not not termination (it is unsound for termination and
liveness).

As an example, consider the two code fragments in Fig-
ure 11. Imagine that we are executing these two fragments
concurrently. To prove the termination of the left thread we
must prove that it does not get stuck waiting for the call to
lock. To prove this we can assume that the other thread will
always eventually release the lock—but to prove this of the
code on the right we must assume the analogous property of
the thread on the left, etc. In this case we can certainly just
consider all possible interleavings of the threads, thus turn-
ing the concurrent program into a sequential model repre-

1 while x > 0 do
2 x := x− 1;
3 lock(lck)
4 b := x;
5 unlock(lck)
6 done

1 while y > 0 do
2 lock(lck)
3 y := b;
5 unlock(lck)
6 done

Figure 11: Example of multi-threaded terminating
producer/consumer program. To prove that the
thread on the left terminates we must assume that
the thread on the right always calls unlock when
needed. To prove that the thread on the right al-
ways calls unlock when needed, we must prove that
that the thread on the left always calls unlock when
needed, etc.

senting its executions, but this approach does not scale well
to larger programs. The challenge is to develop automatic
methods of finding non-circular rely-guarantee termination
arguments. Recent steps [29] have developed heuristics that
work for non-blocking algorithms, but more general tech-
niques are still required.

Advanced programming features. The industrial adoption of
high-level programming features such as virtual functions,
inheritance, higher-order functions, or closures make the
task of proving industrial programs more of a challenge.
With few exceptions (such as [27]), this area has not been
well studied.

Untyped or dynamically typed programs also contribute
difficulty when proving termination, as current approaches
are based on statically discovering data-structure invariants
and finding arithmetic measures in order to prove termi-
nation. Data in programs is often encoded in strings, using
pattern matching to marshal data in and out of strings. Ter-
mination proving tools for for Javascript would be especially
welcome, given the havoc that non-terminating Javascript
causes daily for web browsers.

Finding preconditions that guarantee termination. In the
case that a program does not guarantee termination from all
initial configurations, we may want to automatically discover
the conditions under which the program does guarantee ter-
mination. That is, when calling some function provided by
a library: what are the conditions under which the code is
guaranteed to return with a result? The challenge in this
area is to find the right precondition: the empty precondi-
tion is correct but useless, whereas the weakest precondition
for even very simple programs can often be expressed only
in complex domains not supported by todays tools. Fur-
thermore, they should be computed quickly (the weakest
precondition expressible in the target logic may be too ex-
pensive to compute). Recent work [18, 41] has shown some
preliminary progress in this direction.

Liveness. We have alluded to the connection between live-
ness properties [1] and the program termination problem.
Formally, liveness properties expressed in temporal logics
such as LTL can be converted into questions of fair termination—
termination proving were certain non-terminating executions
are deemed unfair via given fairness constraints, and thus ig-
nored. Current tools, in fact, either perform this reduction,

1 while x > 1 do
2 if x is divisible by 2 then
3 x := x/2;
4 else
5 x := 3x + 1;
6 fi
7 done

Figure 12: Collatz program. We assume that x
ranges over all natural numbers with arbitrary pre-
cision (that is, not 64-bit vectors nor 32-bit vec-
tors). A proof of this program’s termination or non-
termination is not known.

or simply require the user to express liveness constraints
directly as the set of fairness constraints [17]. Neither ap-
proach is optimal: the reduction from liveness to fairness
is inefficient in the size of the conversion, and fairness con-
straints are difficult for humans to understand when used
directly. An avenue for future work would be to directly
prove liveness properties, perhaps as an adaption of existing
termination proving techniques.

Dynamic analysis and crash dumps for liveness bugs. In this
article we have focused only on static, or compile-time, proof
techniques rather than techniques for diagnosing divergence
during execution. Some effort has been placed into the area
of automatically detecting deadlock during execution time.
With new developments in the area of program termination
proving we might find that automatic methods of discover-
ing livelock could also now be possible. Temporary modifi-
cations to scheduling, or other techniques, might be also be
employed to help programs not diverge even in cases where
they do not guarantee termination or other liveness prop-
erties. Some preliminary work has begun to emerge in this
area (see [32]) but more work is needed.

Scalability, performance, and precision. Scalability to large
and complex programs is currently a problem for modern
termination provers—today’s techniques are known, at best,
to scale to simple systems code of 30,000 lines of code. An-
other problem we face is one of precision. Some small pro-
grams currently cannot be proved terminating with existing
tools. Turing’s undecidability result, of course, states that
this will always be true, but this does preclude us from im-
proving precision for various classes of programs and con-
crete examples. The most famous example is that of the
Collatz’ problem, which amounts to proving the termination
or non-termination of the program in Figure 12. Currently
no proof of this program’s termination behavior is known.

Conclusion
This article has surveyed recent advances in program ter-
mination proving techniques for sequential programs, and
pointed towards on-going work and potential areas for fu-
ture development. The hope of many tool builders in this
area is that the current and future termination proving tech-
niques will become generally available for developers wishing
to directly prove termination or liveness. We also hope that
termination-related applications—such as detecting livelock
at runtime or Wang’s tiling problem—will also benefit from

these advances.

Acknowledgments
todo

1. REFERENCES
[1] B. Alpern and F. B. Schneider. Defining liveness.

Information Processing Letters, 21:181–185, 1985.

[2] D. Babic, A. J. Hu, Z. Rakamaric, and B. Cook.
Proving termination by divergence. In SEFM, pages
93–102, 2007.

[3] T. Ball, E. Bounimova, B. Cook, V. Levin,
J. Lichtenberg, C. McGarvey, B. Ondrusek, S. K.
Rajamani, and A. Ustuner. Thorough static analysis
of device drivers. In EuroSys: European Systems
Conference, pages 73–85, 2006.

[4] J. Berdine, A. Chawdhary, B. Cook, D. Distefano, and
P. O’Hearn. Variance analyses from invariance
analyses. In POPL: Programming Language Design
and Implementation, 2007.

[5] J. Berdine, B. Cook, D. Distefano, and P. O’Hearn.
Automatic termination proofs for programs with
shape-shifting heaps. In CAV: Computer Aided
Verification, 2006.

[6] A. Biere, C. Artho, and V. Schuppan. Liveness
checking as safety checking. In FMICS: Formal
Methods for Industrial Critical Systems, volume 66(2)
of ENTCS, 2002.

[7] A. Bouajjani, M. Bozga, P. Habermehl, R. Iosif,
P. Moro, and T. Vojnar. Programs with lists are
counter automata. In CAV: Computer Aided
Verification, 2006.

[8] A. Bradley, Z. Manna, and H. Sipma. Termination of
polynomial programs. In VMCAI: Verification, Model
Checking, and Abstract Interpretation, volume 3385 of
LNCS, pages 113–129. Springer, 2005.

[9] A. R. Bradley and Z. Manna. Termination and
invariance analysis of loops. In ATVA, page 2, 2005.

[10] A. R. Bradley, Z. Manna, and H. B. Sipma. Linear
ranking with reachability. In CAV, pages 491–504,
2005.

[11] A. R. Bradley, Z. Manna, and H. B. Sipma. The
polyranking principle. In ICALP, pages 1349–1361,
2005.

[12] A. R. Bradley, Z. Manna, and H. B. Sipma.
Termination analysis of integer linear loops. In
CONCUR, pages 488–502, 2005.

[13] M. Braverman. Termination of integer linear
programs. In CAV, pages 372–385, 2006.

[14] G. Cantor. Contributions to the Founding of the
Theory of Transfinite Numbers. Dover, 1955.

[15] A. Chawdhary, B. Cook, S. Gulwani, M. Sagiv, and
H. Yang. Ranking abstractions. In ESOP: European
Symposium on Programming, 2008.

[16] M. Colón and H. Sipma. Synthesis of linear ranking
functions. In TACAS: Tools and Algorithms for the
Construction and Analysis of Systems, volume 2031 of
LNCS, pages 67–81. Springer, 2001.

[17] B. Cook, A. Gotsman, A. Podelski, A. Rybalchenko,
and M. Vardi. Proving that programs eventually do

something good. In POPL: Programming Language
Design and Implementation, 2007.

[18] B. Cook, S. Gulwani, T. Lev-Ami, A. Rybalchenko,
and M. Sagiv. Proving conditional termination. In
CAV, 2008.

[19] B. Cook, A. Podelski, and A. Rybalchenko.
Termination proofs for systems code. In PLDI:
Programming Language Design and Implementation,
2006.

[20] B. Cook, A. Podelsksi, and A. Rybalchenko.
CFL-termination. Formal Methods in System Design,
To appear 2009.

[21] P. Cousto and R. Cousot. Abstract interpretation: A
unified lattice model for static analysis of programs by
construction or approximation of fixpoints. In POPL:
Principles of Programming Languages, 1977.

[22] L. de Moura and N. Bjorner. Z3: An efficient SMT
solver. In TACAS, 2008.

[23] N. Dershowitz, N. Lindenstrauss, Y. Sagiv, and
A. Serebrenik. A general framework for automatic
termination analysis of logic programs. Appl. Algebra
Eng. Commun. Comput., 12(1/2):117–156, 2001.

[24] B. Dutertre and L. de Moura. A fast linear-arithmetic
solver for DPLL(T)∗. In CAV, 2006.

[25] J. Farkas. Uber die theorie der einfachen
ungleichungen. Journal fur die Reine und Angewandte
Mathematik, 124:1–27, 1902.

[26] A. Geser. Relative termination. PhD dissertation,
1990.

[27] J. Giesl, S. Swiderski, P. Schneider-Kamp, and
R. Thiemann. Automated termination analysis for
haskell: From term rewriting to programming
languages. In RTA, 2006.

[28] J. Giesl, R. Thiemann, P. Schneider-Kamp, and
S. Falke. Automated termination proofs with AProVE.
In RTA: Rewriting Techniques and Applications,
volume 3091 of LNCS, pages 210–220. Springer, 2004.

[29] A. Gotsman, B. Cook, M. Parkinson, and
V. Vafeiadis. Proving that non-blocking algorithms
don’t block. In POPL: Programming Language Design
and Implementation, 2009.

[30] A. Gupta, T. Henzinger, R. Majumdar,
A. Rybalchenko, and R. Xu. Proving non-termination.
In POPL: Principles of Programming Languages, 2008.

[31] T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre.
Lazy abstraction. In POPL: Principles of
Programming Languages, pages 58–70. ACM Press,
2002.

[32] H. Jula, D. Tralamazza, C. Zamfir, and G. Candea.
Deadlock immunity: Enabling systems to defend
against deadlocks. In OSDI, 2008.

[33] D. Koenig. Sur les correspondances multivoques des
ensembles. Fundamenta Mathematicae, 8:114–134,
1926.

[34] C. S. Lee, N. D. Jones, and A. M. Ben-Amram. The
size-change principle for program termination. In
POPL: Principles of Programming Languages, 2001.

[35] S. Magill, J. Berdine, E. Clarke, and B. Cook.
Arithmetic strengthening for shape analysis. In SAS:
Static Analysis Symposium, 2007.

[36] K. L. McMillan. Lazy abstraction with interpolants. In

CAV, 2006.

[37] J. Misra. On the union of well-founded relations: An
application of koenig’s lemma. Unpublished note,
1996.

[38] D. V. Panagiotis Manolios. Termination analysis with
calling context graphs. In CAV: Conference on
Computer Aided Verification, 2006.

[39] A. Podelski and A. Rybalchenko. A complete method
for the synthesis of linear ranking functions. In
VMCAI: Verification, Model Checking, and Abstract
Interpretation, pages 239–251, 2004.

[40] A. Podelski and A. Rybalchenko. Transition
invariants. In LICS: Logic in Computer Science, 2004.

[41] A. Podelski, A. Rybalchenko, and T. Wies. Heap
assumptions on demand. In CAV, 2008.

[42] F. Ramsey. On a problem of formal logic. London
Math. Soc., 30:264–286, 1930.

[43] G. Stix. Send in the Terminator. Scientific American
Magazine, November 2006.

[44] C. Strachey. An impossible program. Computer
Journal, 7(4):313, 1965.

[45] A. Tiwari. Termination of linear programs. In CAV,
pages 70–82, 2004.

[46] A. Turing. On computable numbers, with an
application to the Entscheidungsproblem. London
Mathematical Society, 42(2):230–265, 1936.

[47] A. Turing. Checking a large routine. In Report of a
Conference on High Speed Automatic Calculating
Machines, 1949.

[48] V. Vafeiadis and M. Parkinson. A marriage of
rely/guarantee and separation logic. In CONCUR,
2007.

[49] H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook,
D. Distefano, and P. O’Hearn. Scalable shape analysis
for systems code. In CAV: Computer Aided
Verification, 2008.

Byron Cook is a researcher at Microsoft’s research labo-
ratory at Cambridge University, and Professor of Computer
Science at Queen Mary, University of London.

