
1

Program termination · Lecture 3

Berkeley · Spring ’09

Byron Cook

2

Summary from the last lecture

We can build termination provers and analysis tools
using mixtures of
� Symbolic model checkers for safety

� Program analysis tools

� Rank function synthesis engines

Programs:
� Arithmetic

� Sequential

� Non-recursive

We simply fail when termination cannot be proved

3

Variance analysis

4

Variance analysis

5

Variance analysis

6

Variance analysis

7

Variance analysis

8

Variance analysis

9

Refinement

10

Refinement

11

Induction

12

Outline

Recursive programs

Weakest preconditions

13

Outline

Recursive programs

Weakest preconditions

14

Outline

15

Outline

16

Recursive programs

Termination & recursion are orthogonal
problems

Today:

� A new program transformation that returns
semantically equivalent non-recursive programs

� Assumes an oracle for partial-correctness semantics

� Transformation is “parametric”

17

Recursive programs

18

Recursive programs

19

Recursive programs

20

Recursive programs

21

Recursive programs

22

Recursive programs

23

Recursive programs

24

Recursive programs

25

Recursive programs

[PLDI’06] transformation for termination is
unaware of recursion

Termination & recursion are orthogonal
problems

Today:

� A new program transformation that returns
semantically equivalent non-recursive programs

� Assumes an oracle for partial-correctness semantics

� Transformation is “parametric”

26

Recursive programs

[PLDI’06] transformation for termination is
unaware of recursion

Termination & recursion are orthogonal
problems

Today:

� A new program transformation that returns
semantically equivalent non-recursive programs

� Assumes an oracle for partial-correctness semantics

� Transformation is “parametric”

27

Recursive programs

[PLDI’06] transformation for termination is
unaware of recursion

Termination & recursion are orthogonal
problems

Today:

� A new program transformation that returns
semantically equivalent non-recursive programs

� Assumes an oracle for partial-correctness semantics

� Transformation is “parametric”

28

Recursive programs

[PLDI’06] transformation for termination is
unaware of recursion

Termination & recursion are orthogonal
problems

Today:

� A new program transformation that returns
semantically equivalent non-recursive programs

� Assumes an oracle for partial-correctness semantics

� Transformation is “parametric”

29

Fibonacci

30

Fibonacci

31

Fibonacci

32

Fibonacci

33

Fibonacci

34

Fibonacci

35

Fibonacci

36

Fibonacci

37

Fibonacci

38

Fibonacci

39

Fibonacci

40

Fibonacci

41

Fibonacci

42

Fibonacci

43

Fibonacci

44

Fibonacci

45

Fibonacci

46

Recursive programs

[PLDI’06] transformation for termination is
unaware of recursion

Termination & recursion are orthogonal
problems

Today:

� A new program transformation that returns
semantically equivalent non-recursive programs

� Assumes an oracle for partial-correctness semantics

� Transformation is “parametric”

47

Removing recursion

48

Removing recursion

49

Removing recursion

50

Removing recursion

51

Removing recursion

52

Removing recursion

53

Removing recursion

54

Removing recursion

55

Removing recursion

56

Removing recursion

57

Removing recursion

58

Removing recursion

59

Removing recursion

60

Removing recursion

61

Removing recursion

62

Removing recursion

63

Removing recursion

64

Removing recursion

65

Removing recursion

66

Removing recursion

67

Removing recursion

68

Removing recursion

69

Underapproximation

Imagine that we have relational summaries
that underapproximate partial-correctness
semantics

We can use these summaries to prove non-
terminating using the same technique

70

Underapproximation

71

Underapproximation

72

Underapproximation

73

Underapproximation

74

Underapproximation

75

Discussion

Semantics preserving recursion elimination

� Assumes (perhaps an overapproximation of) partial-correctness
semantics

� Transformed program is harder to execute, but simplifies proof of
program termination

� Shows that termination and recursion are somehow orthogonal

� Similar to observations about the heap

Transformation case-splits on termination from a given state

� Doesn’t terminate? Throw away the stack........

� Does terminate? Use a summary………

Implementation is a snap!

� Termination for non-recursive programs + relational RHS

� Standard techniques used to refine RHS summaries on-demand

76

Implementation

77

Outline

Recursive programs

Weakest preconditions

78

Underapproximating weakest preconditions

79

Underapproximating weakest preconditions

80

Underapproximating weakest preconditions

81

Underapproximating weakest preconditions

82

Underapproximating weakest preconditions

83

Underapproximating weakest preconditions

84

Underapproximating weakest preconditions

85

Underapproximating weakest preconditions

86

Motivation

Automatic termination/liveness proving is now a reality

Advanced termination/liveness tools now supporting

� Concurrency,

� Pointers,

� Heap,

� Recursion,

� Omega-regular properties,

� Counterexample-generation,

� etc

Tools:

� Terminator (currently being transferred into Windows SDV product)

� ARMC (Andrey’s publicly available version)

� Polyrank (from Bradley, Manna, Sipma)

� T2 (in development for my book and CMU course)

87

Motivation

Automatic termination/liveness proving is now a reality

Advanced termination/liveness tools now supporting

� Concurrency,

� Pointers,

� Heap,

� Recursion,

� Omega-regular properties,

� Counterexample-generation,

� etc

Tools:

� Terminator (currently being transferred into Windows SDV product)

� ARMC (Andrey’s publicly available version)

� Polyrank (from Bradley, Manna, Sipma)

� T2 (in development for my book and CMU course)

88

Motivation

Automatic termination/liveness proving is now a reality

Advanced termination/liveness tools now supporting

� Concurrency,

� Pointers,

� Heap,

� Recursion,

� Omega-regular properties,

� Counterexample-generation,

� etc

Tools:

� Terminator (currently being transferred into Windows SDV product)

� ARMC (Andrey’s publicly available version)

� Polyrank (from Bradley, Manna, Sipma)

� T2 (in development for my book and CMU course)

89

Motivation

Automatic termination/liveness proving is now a reality

Advanced termination/liveness tools now supporting

� Concurrency,

� Pointers,

� Heap,

� Recursion,

� Omega-regular properties,

� Counterexample-generation,

� etc

Tools:

� Terminator (currently being transferred into Windows SDV product)

� ARMC (Andrey’s publicly available version)

� Polyrank (from Bradley, Manna, Sipma)

� T2 (in development for my book and CMU course)

90

Motivation

Automatic termination/liveness proving is now a reality

Advanced termination/liveness tools now supporting

� Concurrency,

� Pointers,

� Heap,

� Recursion,

� Omega-regular properties,

� Counterexample-generation,

� etc

Tools:

� Terminator (currently being transferred into Windows SDV product)

� ARMC (Andrey’s publicly available version)

� Polyrank (from Bradley, Manna, Sipma)

� T2 (in development for my book and CMU course)

91

Motivation

Automatic termination/liveness proving is now a reality

Advanced termination/liveness tools now supporting

� Concurrency,

� Pointers,

� Heap,

� Recursion,

� Omega-regular properties,

� Counterexample-generation,

� etc

Tools:

� Terminator (currently being transferred into Windows SDV product)

� ARMC (Andrey’s publicly available version)

� Polyrank (from Bradley, Manna, Sipma)

� T2 (in development for my book and CMU course)

92

Motivation

93

Motivation

94

Motivation

95

PreSynth algorithm

96

PreSynth algorithm

97

Implementation

98

Example

99

Motivation

Automatic termination/liveness proving is now a reality

Advanced termination/liveness tools now supporting

� Concurrency,

� Pointers,

� Heap,

� Recursion,

� Omega-regular properties,

� Counterexample-generation,

� etc

Tools:

� Terminator (currently being transferred into Windows SDV product)

� ARMC (Andrey’s publicly available version)

� Polyrank (from Bradley, Manna, Sipma)

� T2 (in development for my book and CMU course)

100

Example

101

Example

102

Example

103

Example

104

Example

105

Example

106

Example

107

Example

108

Example

109

Other examples

110

Other examples

111

Other examples

112

Other examples

113

Other examples

114

Other examples

115

Other examples

116

Other examples

117

Other examples

118

Improving termination provers

Synthesis technique can help improve power
of the termination prover

Key idea: Found precondition can be used as
case split

119

Improving termination provers

120

Examples

121

Examples

122

Refinement

123

Outline

Recursive programs

Weakest preconditions

