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Summary from the last lecture

We can build termination provers and analysis tools 
using mixtures of
� Symbolic model checkers for safety

� Program analysis tools 

� Rank function synthesis engines

Programs:
� Arithmetic

� Sequential

� Non-recursive

We simply fail when termination cannot be proved
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Induction
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Outline

Recursive programs

Weakest preconditions
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Recursive programs

Termination & recursion are orthogonal 
problems 

Today:

� A new program transformation that returns 
semantically equivalent non-recursive programs

� Assumes an oracle for partial-correctness semantics

� Transformation is “parametric”
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Underapproximation

Imagine that we have relational summaries 
that underapproximate partial-correctness 
semantics

We can use these summaries to prove non-
terminating using the same technique
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Discussion

Semantics preserving recursion elimination

� Assumes (perhaps an overapproximation of) partial-correctness 
semantics

� Transformed program is harder to execute, but simplifies proof of 
program termination

� Shows that termination and recursion are somehow orthogonal 

� Similar to observations about the heap 

Transformation case-splits on termination from a given state

� Doesn’t terminate?  Throw away the stack........

� Does terminate? Use a summary………

Implementation is a snap!

� Termination for non-recursive programs + relational RHS

� Standard techniques used to refine RHS summaries on-demand
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Implementation
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Motivation

Automatic termination/liveness proving is now a reality

Advanced termination/liveness tools now supporting

� Concurrency,

� Pointers,  

� Heap,

� Recursion,

� Omega-regular properties,

� Counterexample-generation,

� etc

Tools:

� Terminator (currently being transferred into Windows SDV product)

� ARMC (Andrey’s publicly available version)

� Polyrank (from Bradley, Manna, Sipma)

� T2 (in development for my book and CMU course)
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Improving termination provers

Synthesis technique can help improve power 
of the termination prover

Key idea: Found precondition can be used as 
case split
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